Я веду кружок @mathcircle Channel on Telegram

Я веду кружок

@mathcircle


Для всех, кто ведёт школьные кружки по математике. Делимся материалами занятий, идеями и размышлениями. Анкета участника (заполняется один раз для канала и чата) https://forms.gle/6H8uzP7VxYWUkwBB6

Математический кружок: Учим и развиваемся вместе (Russian)

Дорогие друзья! Представляем вам канал "Я веду кружок" или как его можно найти в Telegram - @mathcircle. Этот канал создан для всех, кто ведёт школьные кружки по математике и хочет делиться материалами занятий, идеями и размышлениями. Здесь вы найдете множество полезных ресурсов, которые помогут вам сделать ваши уроки более интересными и познавательными. Будь то задачи, методические материалы или просто вдохновляющие истории из практики - все это можно найти на нашем канале. Мы приглашаем вас присоединиться к нашему сообществу и стать частью нашего математического кружка. Вместе мы будем учиться, развиваться и вдохновлять друг друга на новые свершения. Для участия в нашем кружке вам нужно заполнить анкету участника, которую можно найти по ссылке: https://forms.gle/6H8uzP7VxYWUkwBB6. Заполните ее один раз для канала и чата и вы сможете получить доступ ко всем материалам и общаться с единомышленниками. Не упустите возможность стать частью нашего кружка и почувствовать магию математики вместе с нами! До встречи на канале @mathcircle!

Я веду кружок

18 Jan, 14:19


Коллеги, в это воскресенье «Кроссворд Тьюринга» проведёт научно-популярную лекцию для широкой аудитории в «Циферблате» на Солянке.

Мы поговорим о том, как древние греки вычисляли размеры Земли, Луны и Солнца, используя только геометрию и наблюдения. Лекция рассчитана на школьников и взрослых, не требует специальной подготовки и построена так, чтобы каждый мог понять и повторить шаги Эратосфена и Аристарха.

Для нас это важный и немного волнительный эксперимент, так что мы будем особенно рады всем слушателям.

Я веду кружок

16 Dec, 08:50


Приглашаю всех добавлять свои кружки на карту, сделанную уже довольно давно Арманом @tuganbaev
https://mathmap.xyz/circlemap

А то периодически люди задают вопросы "а есть ли кружки в таком-то месте", а они реально есть, хотя ни гугл, ни яндекс о них не знают. Пусть хоть на нашей собственной карте будет всё.

Я веду кружок

06 Dec, 13:04


поделюсь ссылкой со вчерашнего рассказа Жени Ширяева на семинаре учителей:

http://eshir.ru/innop/

там собираются описания разных математических игровых активностей

примерно про то же недавно открывшийся (и пока совсем небольшой) раздел

https://etudes.ru/mathgrounds/

надеюсь, что в комментариях еще напишут про разные страницы такого рода

Я веду кружок

06 Dec, 09:49


Открыт приём заявок на конкурс «Смарт КЕНГУРУ» 2025! 🔥

31 января 2025 года в школах России состоится Всероссийский математический конкурс «Смарт Кенгуру». Принять участие могут ученики с 1 по 11 классы.

Форматы проведения:

Для 1 класса: математическая игра с подарками для всех участников;

Для 2-10 классов: конкурс с подарком для каждого и призами для лучших;

Для 11 класса: тестирование ЕГЭ по математике с подарками и индивидуальной рецензией для каждого участника.

Организационный взнос за участие составляет 130 рублей.

Все желающие участвовать должны обратиться к своему учителю.

Оставляйте заявку по ссылке: https://mathkang.ru/smartkang?ysclid=m2blore9yb392116224

Все вопросы вы можете задать в комментариях, а за обновлениями также можно следить в Телеграм-канале: t.me/mathkang

Ждём всех-всех-всех 31 января 2025 на конкурсе «Смарт КЕНГУРУ»!

#смарткенгуру

Я веду кружок

04 Dec, 13:51


Для казанских френдов. Вдруг кто не в курсе.

Я веду кружок

04 Dec, 13:51


ОЦ Одаренный ребенок совместно с Управлением Образования г. Казани проводит Открытую городскую олимпиаду по математике г. Казани для 2-6 классов.

Олимпиада проводится с 2012 года. В прошлом году в олимпиаде приняли участие более 2500 школьников.

Первый отборочный тур в этом учебном году состоится 8 декабря (воскресенье) в 16.00.

Тур проводится онлайн.
Участвовать могут все желающие.
Предварительная регистрация не требуется.
Достаточно в день олимпиады в 16.00 зайти на сайт olymp.kazan-math.info и перейти к форме с задачами нужного класса.

Сейчас на сайте олимпиады можно ознакомиться с порядком проведения олимпиады, задачами прошлых лет.

На сайте также есть тренировочные формы на основе задач прошлых олимпиад. Можно потренироваться в условиях, приближенных к настоящей олимпиаде. Проверка ответов происходит автоматически.

Я веду кружок

04 Dec, 13:37


Здравствуйте, коллеги.

Мы проводим очередную олимпиаду ЮМШ 15 декабря. На нескольких десятках площадок в РФ и за рубежом. Основные трудности - как часто бывает - в Москве: не хватает принимающих на 10-11 класс (там и участников больше всего, и задачи сложнее). Основной московский организатор в этом году - Т-Банк. Обещают какую-то денежку, а также банкетный стол и немножко мерча. В общем, если вы чувствуете в себе такие силы, то зовём-зовём.

Форма для записи: https://polls.tbank.ru/s/cm417q8wz00mx0dt1bob3g8t1

Я веду кружок

03 Dec, 15:32


И не только москвичам

Я веду кружок

03 Dec, 15:32


Привет!
Мы тут в соответствующем разделе на сайте Specmat2x2.ru затеяли математические онлайн-игры проводить с завидной регулярностью. Ну и дела идут вроде в гору. Три игры из очередного цикла "Математического тетриса" прошли. Кто участвовал — пишите обратную связь @NikitaMikhaylovskiy, вдруг что-то не понравилось или, наоборот, понравилось. Будем работать над улучшениями.

Вообще-то, хотелось порекламировать это дело еще раз, потому что на следующей неделе для 3 и для 7 класса будут две игры. Если есть команды — приводите, да и друзей зовите! Все бесплатно, конечно.
Ссылка на регистрацию та же: https://specmat2x2.ru/igra

Я веду кружок

03 Dec, 15:31


https://t.me/math_cool_rus/381

Я веду кружок

03 Dec, 15:31


Москвичам

Я веду кружок

01 Dec, 10:33


https://youtu.be/xrsCbqaN0Mc?si=cWL6-MkcvPoIR4me

Я веду кружок

20 Nov, 07:37


Мне тут передали, что на роль автора задач для AI бенчмарка возобновили поиски и планируют нанять ещё нескольких.

Всё так же, как тут, только на самом деле платят от $300 за задачу (а не от $100, как раньше писали). Можно подписаться на фуллтайм и получать ещё базовый оклад в $2000 в месяц, а можно договориться на сдельную работу и получать только гонорар за присланные задачи. Платить, к сожалению, умеют только на зарубежный счёт.

Если вдруг есть задор — напишите, пожалуйста, Альбине @AlbinaMakarova, потому что если подаваться через сайт, то есть шанс, что вам никто никогда не ответит.

Я веду кружок

15 Nov, 17:38


Только что на хвосте принесли, что в муниципальном уровне мат.олимпиады в Татарстане используется тестовый формат заданий и дается аж 20 задач.

Кто-нибудь (не обязательно из Татарстана) может объяснить, зачем это делается? Я вот просто ни единого аргумента за тест-задачи на 2 этапе Всеросса (где следующие этапы - заведомо не такие) не вижу. Ну ладно, на первом (школьном) это обусловлено массовостью и автоматизацией проверки. А на втором-то зачем?

Я веду кружок

05 Nov, 09:29


И еще одна лично-рекламная вещь. Знаете, это вот всегда немножко дергает эффектом +-1. Когда отмечать юбилей мероприятия - когда оно проходит, скажем, в десятый раз, или когда ему исполнилось 10 лет? А вот сейчас у меня нет сомнений, потому что мероприятию 10 лет, а я в нем принимаю активное участие десятый раз (первый год все было очень локальным, и я тогда ничего про МатКэт не знал)

Десять лет мы делаем МатКэт для взрослых и детей - лично я отношусь к нему с любовью и нежностью, как к еще не до конца выросшему ребенку.
За эти 10 лет мы очень многое научились делать существенно лучше, чем в первые годы. Например, мы придумали парный (семейный) зачёт, в котором подводим итоги по сумме баллов двух участников, выступающих в разных лигах - это могут быть брат с сестрой или папа с сыном, два родителя или просто пара друзей. Во время ковида сделали - а потом так и оставили - онлайн-версии, которые проводятся на следующий день после основного турнира на совсем иных задачах. Так что каждый участник может попробовать свои силы дважды - и оффлайн, и онлайн.

Очень рекомендую зарегистрировать собственную площадку в своем городе всем, кто хотел бы выйти за классические рамки доп.образования. Это позволит вам пригласить к участию родителей и просто друзей своих учеников, - а значит, устроить праздник математики для всех. В том числе и тех, кто мнит себя "гуманитарием": белая лига вполне посильна даже для тех, кто забыл почти все, чему его учили в школе.

=====
За месяц до математического флешмоба Маткэт предварительно зарегистрировалось 500 площадок: из них 86 вузов, 102 техникума и колледжа, 299 школ и 13 центров допобразования! 😽 Ежедневно мы добавляем новые площадки, присоединяйтесь, коллеги, с нами интересно! 💫
🔥30 ноября пройдет всероссийский и международный математический флешмоб MathCat🐾В 2024 ГОДУ МАТКЭТУ ИСПОЛНЯЕТСЯ 10 ЛЕТ!🌟
Участие в MathCat всегда бесплатно и общедоступно. 30 ноября - очное участие на площадках РФ и зарубежья, 1 декабря - online на сайте маткэт.рф
MathCat — это первый в России развлекательно-образовательный флешмоб по математике, в рамках которого любой желающий может проверить свои математические знания в игровом виде.
MathCat!😻 Что это такое?👀
📌Сотни площадок по всей стране от Калининграда до Камчатки и десятки тысяч участников! 💥😍💫
📌 Авторские наборы задач по математике 4-х уровней сложности на выбор
📌 Возможность принять участие в онлайн на следующий день 1.12.24 (в первый день зимы!⛄️)
📌 Разные задачи для онлайна и очного участия
📌Участвуй с друзьями и соревнуйся с аналогичными командами по всей стране в командных зачетах 👫
📌 … А еще можно участвовать всей семьей! 🤗
📌 Сертификат каждому участнику от Математического Кота
📌 Абсолютно бесплатное участие!👍
📌Конкурсы с призами для участников 🎁
✏️РЕГИСТРАЦИЯ ПЛОЩАДОК ИДЕТ НА САЙТЕ МАТКЭТ.РФ 🐾🐈
======

Я веду кружок

04 Nov, 15:44


Добрый день!

В этом учебном году мы с коллегами (Сашей Смирновым, Федей Бахаревым, Андреем Меньщиковым, Денисом Афризоновым и Юлием Тихоновым) снова проводим устную командую олимпиаду для старших классов «JetBrains Youth Challenge». Эта олимпиада проходит для учеников 8-11 классов. Всё будет происходить 17 ноября (регистрация до 11 ноября)

Буду рад видеть ваших учеников среди участников олимпиады!

Основные тезисы про олимпиаду:

◆ Участие — бесплатное
◆ Олимпиада — устная
◆ Две лиги: юниоры (8-9 класс) и сеньоры (10-11 класс)
◆ Олимпиада состоится 17-го ноября в 9:00 UTC (12:00 мск) и продлится 4 часа
Регистрация открыта до 11-го ноября, 10:00 UTC (13:00 мск)
◆ Олимпиада — онлайн в Дискорде (надеемся, желающие поучаствовать смогут побороть технические трудности)
◆ Олимпиада — международная
◆ Олимпиада — командная (в команде 1-3 человека)
◆ Язык олимпиады — английский
◆ В олимпиаде 12 задач (4 задачи довывода не идут в зачёт, основные 8 задач вывода идут в зачёт)
◆ Уровень сложности последних задач схож с уровнем последних задач Всероссийской олимпиады

Вот тут можно зарегистрироваться: https://lp.jetbrains.com/youth-challenge/
А вот тут можно посмотреть вариант прошлого года: https://drive.google.com/file/d/1zhCY0sYe1RZMy1PoZYlOuIKn1ijavfTV/view

Я веду кружок

04 Nov, 10:32


Добрый день.

Кажется, что давно назрела необходимость проведения математичеких игр, причем регулярно, бесплатно и в онлайн-формате, чтобы никуда не ездить, а сберечь время и другие ресурсы. Даже в карусель нельзя регулярно поиграть, а про другие игры и говорить нечего.

Мои коллеги @NikitaMikhaylovskiy (ТЛ "Дважды Два") и @konstantane (Турнир Мёбиуса) взялись это реализовывать.
Каждый месяц-полтора ребята будут объявлять начало новой (для кого-то совсем старой) математической игры, ну и проводить её по параллелям (пока план на 3—7 классы, а дальше как пойдет).

Первая — "Математический тетрис". Ближайшая игра для 4 класса будет уже 11 ноября, регистрируйтесь. Потом 5 класс (25 ноября), а затем 6 (28 ноября). Дальнейшее расписание пока неизвестно, но регистрировать на будущее тоже можно. После анонса очередной игры для вашей параллели пришлют письмо с напоминалкой.
Мероприятие командное, то есть для преподавателей/руководителей кружков, индивидуального участия пока нет.

Подробная информация находится здесь: https://specmat2x2.ru/igra

Я веду кружок

23 Oct, 12:50


Новое самое большое простое число обнаружили с помощью графических процессоров. Для его записи потребуется 41 024 320 знаков
https://nplus1.ru/news/2024/10/23/new-largest-known-prime-number

Я веду кружок

23 Oct, 10:44


Привет, друзья, знакомые и незнакомые.

Есть ли у кого из вас сейчас школьники, которым было бы интересно попилить совместно геометрический проект?

Общая идея. 1) Есть список задач Верника, для которого уже окончательно все известно, что решаемо, а что - нет. Когда-то @BelyaevSan написал об этом хорошую статью, которую я с тех пор для себя зову "Верник с человеческим лицом". Ее смысл в том, что мы не просто ищем уравнение, которое имеет решение в циркуле-линейчатых радикалах, а ищем по возможности естественное построение циркулем и линейкой
2) Есть общая теория построений одной линейкой, согласно которой все, что строится ЦиЛ, можно построить и одной линейкой при условии, что задана окружность и ее центр
3) в большинстве разрешимых задач списка Верника какую-нибудь естественную окружность можно строить первым же шагом - если в списке точек есть ее центр и точка на ней.

Соответственно, для всех этих задач возникает весьма естественный вопрос - а как "с человеческим лицом" дорешать каждую задачу, если вот этот шаг уже сделан, а дальше остается одна линейка?

Ну и пункт б) а если есть не просто линейка, а квадратная сетка - пусть даже ограниченная? Поле "Пифагории" в качестве полигона, на котором удобно экспериментировать. Перпендикуляры там быстро и естественно строятся почти всегда, параллельные линии тоже, середины отрезков опять же, биссектрисы и пр...

Я, конечно, мог бы и сам поделать это - но кажется более логичным оставить это детям, а не делать самому.
В общем, с удовольствием поделюсь, если найдутся исполнители.

Я веду кружок

15 Oct, 08:03


День добрый.

Коллеги, а вот такая тема. Представьте, что вам предлагают составить и провести семестровый курс математики для магистрантов-гуманитариев. Возможно, они имеют представление о какой-то математике, но, вполне возможно, что даже и дроби с процентами забыли,
Тем не менее, запрос есть, мотивация тоже есть. Нет только программы курса, целей и всего того, что обычно автоматом прилагается к вузовским курсам в хороших вузах.

Ваши предложения по программе?

Я веду кружок

07 Oct, 17:21


https://snob.ru/news/v-kitae-otkroiut-kliniku-dlia-tekh-kto-ne-ponimaet-matematiku/

Я веду кружок

03 Oct, 15:49


Пока мы тут фигней балуемся, серьезные люди на серьезных щах ищут сочинителя задач на 10К баксов в месяц.

PS. Они уже нашли, выдыхайте.

Я веду кружок

03 Oct, 15:49


tl;dr: math problems author, avg ~$10000/month, 3 month long project

Недавно мы искали лида-математика в Epoch AI — для проекта по придумыванию нескольких сотен задач. Много людей написали нам «а можно податься через вас не на лида, а просто придумывать задачи?»
Так вот, теперь можно! 🪄

На всякий случай напомним: Epoch — это ресёрч-институт, который анализирует, что происходит и будет происходить с AI. С ними консультируются полисимейкеры из британского правительства и Еврокомиссии, а про их исследования пишут Time и The Economist 🗞

Их новый проект — создание оригинального датасета для оценки математических способностей ML моделей. Для этого нужно придумать много-много сложных и уникальных задач из разных областей математики — и этим можете заниматься именно вы!

Что потребуется?
🔷быть математиком уровня хотя бы PhD. Иметь для этого PhD, кстати, не обязательно 🙂
🔷опыт решения сложных математических задач с использованием программирования и базовое знание Python;
🔷сильный олимпиадный бэкграунд;
🔶 опыт придумывания задач для IMO или других сложных олимпиад.

Платят так: $2000 в месяц + от $100 до $1000 за каждую задачу — в зависимости от сложности. Пока по наблюдениям Epoch за пилотной версией, в среднем будет получаться около $10000 в месяц при фуллтайм-нагрузке.
Полная удалёнка, работать парт-тайм тоже можно — базовые $2k, соответственно, скейлятся. Длиться проект будет около 3 месяцев.

❗️И ещё кое-что важное ❗️
Если вы (или ваши друзья) подавались на автора задач напрямую в Epoch после нашего поста — напишите нам, пожалуйста! Мы постараемся поскорее узнать фидбек про вас, и поможем с процессом ❤️

Пишите обо всём этом Альбине @AlbinaMakarova 🌸

Я веду кружок

24 Sep, 18:37


Я слоупок и никогда не видел ранее вот эту игру. А ей уже весьма много лет. Поиграйте, почитайте текст, дайте поиграть детям. https://notdotteam.github.io/trust/

Я веду кружок

24 Sep, 15:43


Дорогие друзья! 30 октября (или около того) уже всем тут известный СмартКенгуру проводит семинар по внешкольному обучению математике в начальной школе. Основной страницы пока нет, но скоро будет, а я с радостью приму ваши предложения о выступлениях. Семинар продлится один день, время на выступление 20-25 минут, презентация желательна (для дальнейшей публикации) но не обязательна. Очень жду (кстати с большим интересом, сам учил дошкольников, не уверен, что получалось неплохо)

Я веду кружок

23 Sep, 16:23


Хорошо написал в ФБ знакомый многим человек

Я веду кружок

21 Sep, 12:25


Наиболее существенное отрицательное следствие редукции «класса» в структуре задачника – усложнение понимания читателями того, на каком месте та или иная задача стояла в исходной олимпиаде в каждом классе. Если это не слишком существенно (подозреваю, что для саратовских районных и городских олимпиад это так и есть), то и не страшно. А если существенно? Например, если одна и та же задача использована в 7 и 8 коассе, при этом она (в книге) стоит третьей по счёту, а в скобках у неё стоит пометка (7, 8) – то кажется более-менее ясным, что в седьмом классе она и была третьей. Но какой она была в восьмом классе? Тоже третьей? Или второй? А может, первой? Если же задача в книге приведена "с пунктами", причём разные пункты соответствуют разным классам, то количество вариантов размещения (более сложных пунктов задачи в варианте старшего класса) ещё больше. Наличие в книге детального справочного аппарата способно снизить остроту этой проблемы, но не снять её совсем: не хочется же каждый раз лезть в приложение за ответом на такой естественный вопрос.
В этой связи я хочу предложить альтернативу, которая, насколько мне известно, пока ни в одном задачнике не использовалась: изменить порядок задач с "естественного" (сначала "класс", а внутри класса – по порядку) на "алфавитный". То есть сначала все первые задачи по возрастанию классов, потом все вторые задачи тоже по порядку (кроме тех вторых задач, которые уже встретились в другом классе под номером 1), и так далее до последних задач. Разумеется, после каждой задачи в скобках обязательно указываются классы. При этом я исхожу из того, что монотонность задач в разных классах должна быть (как правило!) одинаковой: более трудная задача внутри каждого класса имеет больший номер. Таким образом, порядок нумерации задач каждого класса внутри книги будет точно соответствовать исходному олимпиадному порядку, просто задачи одного класса будут располагаться не подряд.
Правда, такой подход исключает объединение разных пунктов в одну задачу (с одним номером), но это всё-таки не очень часто встречающийся случай.
Мне представляется, что именно такой порядок следования задач может являться предпочтительным в тех случаях, когда книга рассматривается не как тренировочное издание для самоподготовки, а как методическое – то есть когда целевой аудиторией являются не школьники, а педагоги: им интересны все задачи данной олимпиады, а вопрос о разбивке на классы является менее значимым, чем для детей.

Я веду кружок

21 Sep, 12:25


11 лет назад я написал (заведомо "в стол") статью про организацию задачников. Почитайте, покомментируйте - я буду признателен за любое обсуждение. Может, где-то в итоге и опубликую, кроме этого канала

О структуре олимпиадных задачников
К.А.Кноп, 20.05.2013
Цель настоящей статьи – продемонстрировать, что проблема выбора составителем олимпиадного задачника правильной структуры не столь проста, как это поначалу кажется, и, вполне возможно, не имеет единого для всех задачников "правильного решения". Иначе говоря, выбор решения должен делаться для каждого задачника заново, исходя из специфики соревнований, объёма и полноты книги.
В статье не будут рассматриваться два наиболее распространённых частных случая – "сборник задач одной олимпиады за много лет" и "сборник задач нескольких соревнований за один год". Это обусловлено даже не тем, что эти случаи более просты, а тем, что соответствующие сборники имеют несколько иные цели и задачи, нежели рассматриваемый основной случай "задачник нескольких соревнований на несколько лет". Если "задачник одного года" по своей сути обязан быть аналогом летописи, а "задачник одной олимпиады" – аналогом сборника летописей то "задачник многих олимпиад за многие годы" может и должен быть скорее аналогом хрестоматии – иначе говоря, книгой для чтения. Разница выражается, например, в выборе составителем книги, как ему поступать с задачами, которые повторялись в разных классах. Для "летописей" правильный ответ, на мой взгляд, состоит в том, что полное условие задачи должно быть повторено заново, а для "хрестоматий" – каждая задача включается один раз, а из всех последующих её вхождений ставится ссылка.
Кроме этого, я совсем не рассматриваю организацию тематических сборников задач (например, "Зарубежные математические олимпиады" под ред. И.Н. Сергеева или "Сборник олимпиадных задач" Н.В. Горбачёва – это фактически не олимпиадные, а тематические сборники, просто объединяющие под одной обложкой задачи разной тематики). У таких сборников также немного иная ниша и даже немного иная аудитория.
I. Сколько уровней в структуре книги?
Итак, мы рассматриваем задачник, в котором собраны задачи нескольких разных олимпиад (или даже более общо – разных соревнований) за несколько лет их проведения. В такой коллекции естественно выделяются четыре уровня иерархической структуры:
• год проведения соревнования или порядковый номер этого сореванования (для краткости – "год")
• тип соревнования ("тип")
• класс, для учащихся которого предлагались задачи ("класс")
• номер задачи внутри класса (плюс, возможно, какие-то дополнительные параметры типа "довывод"/"вывод"/"послевывод").
Очевидно, что последний уровень уже не является элементом оглавления, а просто задаёт нумерацию. (Отмечу, что для математических соревнований достаточно часто информация о номере задачи внутри класса является существенной, поскольку косвенно определяет сложность задачи – а точнее, то представление о сложности, которое имелось у составителей олимпиады в момент её составления.) Следовательно, уровней оглавления вроде бы три – год, тип и класс.

Я веду кружок

21 Sep, 12:25


Однако многие составители не зря считают трёхуровневую структуру слишком тяжеловесной и стремятся ограничиться двумя уровнями. Чаще всего им при этом приходится жертвовать низшим уровнем иерархии – классом. Если такая жертва принесена, то информация о соответствии между задачами и классами становится справочным материалом и должна быть как-то сохранена. Некоторые составители предпочитают вынести её в отдельный раздел ("Приложение"), другие указывают класс в скобках прямо в тексте, после номера задачи. В задачнике Всесоюзных олимпиад (Н.Б. Васильев, А.А. Егоров, 1988) был использован промежуточный подход – справочная информация приводилась сразу после заголовка раздела предыдущего уровня ("год") в форме такой таблички "класс – последовательность номеров задач". В такую табличку легко добавить и все существенные дополнительные свойства – например, в какой день олимпиады решалась та или иная задача, к какой из категорий "довывод". "вывод", "послевывод" она относилась, и даже "процент участников, решивших задачу". Дополнительным бонусом "справочного" подхода является возможность объединять похожие задачи из разных классов в одну задачу книги с помощью выделения в ней "пунктов", – при этом в табличке указывается, какой пункт какому классу предлагался.
II. Тип+год или год+тип?
Иначе говоря, что первично – год проведения или тип олимпиады?
Этот вопрос настолько непрост, что некоторые авторы и издательства предпочитают решать его "гордиевым" методом – задачи из разных типов разносят по разным книжкам. Например, Н.Х. Агаханов и его соавторы практически одновременно издали в серии "Пять колец" четыре книги с задачами разных этапов Всероссийской олимпиады за 1994-2008 годы – одну книгу "Районные олимпиады", одну – "Областные олимпиады" и две книги "Всероссийские олимпиады" (окружной и финальный этапы соответственно).
Забавно, что предыдущее издание в издательстве "Просвещение" с теми же задачами и практически тем же авторским коллективом было разбито по классам: одна книга называлась "Математические олимпиады школьников. 9 класс", две другие – "10 класс" и "11 класс" соответственно.
А как поступают, если все-таки удаётся объединить несколько таких книг под одной обложкой?
Единой практики, увы, не наблюдается. Так, создатели сборника задач "Турниры Ломоносова" поступили механистически, просто объединив свои ежегодные выпуски. В этой книге первичен год проведения, а внутри каждого года последовательно приводятся задачи по различным предметам. Аналогичное механическое решение используется петербуржцами, выпускающими ежегодные задачники СПбМО и периодически объединяющими эти ежегодники в единые сборники.
Составители сборников украинских математических соревнований поступили строго наоборот – разделами верхнего уровня у них являются сами соревнования, а уже внутри этих разделов приведены задачи по годам.
Примерно так же поступил и уж упоминавшийся выше авторский коллектив Всероссийской олимпиады – в книге "Всероссийские олимпиады 1993-2009" они сначала приводят задачи окружных этапов за все годы, а потом – задачи заключительных этапов.
Мне представляется, что за основу для выбора того, какой именно уровень структуры будет верхним, лучше всего брать количественный показатель. Если число лет в книге существенно меньше, чем число типов разных соревнований – то верхним уровнем лучше делать год, а если наоборот – то тип.
Как поступать, когда обе эти величины примерно равны (например, книга о турнирах Ломоносова содержит 8-9 соревнований по разным предметам за 12 лет), – решается исходя из вкусов авторов.
III. Как нумеровать задачи и как ставить ссылки на них?
Пожалуй, ни в одном другом вопросе организации структуры олимпиадных сборников нет большего разнобоя, чем в вопросе о способе нумерации задач.

Я веду кружок

21 Sep, 12:25


Москвичи (буду так для краткости называть все коллективы авторов сборников задач московских олимпиад – и А.А. Лемана с В.Г. Болтянским, и А.К. Толпыго с Г.А. Гальпериным, и Р. Фёдорова сотоварищи, а также составителей сборников задач Турнира Городов) традиционно используют нумерацию, полностью привязанную к структуре оглавления. А поскольку и оглавление у них традиционно трёхуровневое, то это фактически означает сохранение той нумерации, которая собственно и предлагалась на олимпиаде. Иначе говоря, все первые задачи в такой книге имеют номер 1, и ссылки на задачу (например, нумерация в решениях) имеет многоуровневую структуру типа "93.7.1" (первая задача 7 класса 1993 года) или даже "XLI.2.7.1" (первая задача седьмого класса второго тура 41-й олимпиады). При повторе задачи в другом классе, чтобы не дублировать условие, в книге приходится писать что-то типа "См. задачу 1 для 7 класса" – по умолчанию подразумевается, что тип и год остались теми же.
В сборниках петербургских городских олимпиад (видимо, с подачи составителя первого из "многолетних" сборников – Д.В. Фомина) уже не менее традиционно применяется такой подход: все задачи каждого года (независимо от класса) имеют сквозную нумерацию, а для разных лет эта нумерация каждый раз начинается с 1. Таким образом, ссылка на задачу в разделе решений имеет двухступенчатую структуру типа «93.17» для 17-й задачи 1993 года.
Аналогичный, хотя и "ортогональный", подход применили и авторы упомянутых выше украинских сборников: у них верхним уровнем структуры является тип олимпиады (который они для краткости кодируют одной буквой), но нумерация задач внутри каждого типа является сквозной. При этом ссылка на задачу может иметь вид "О.123", что означает "123-я задача раздела О", то есть областных олимпиад.
И, наконец, огромное количество олимпиадных сборников имеют полностью сквозную нумерацию задач, – то есть каждая задача сборника имеет свой уникальный номер.
В недавно вышедшем задачнике Саратовских олимпиад (составитель – А.Н. Андреева, МЦНМО, 2013) применено достаточно хитрое сочетание сквозной и многоуровневой нумерации: В этой книге сокращены сразу два уровня структуры – нет ни "типа", ни "класса", – но при этом после уникального номера каждой задачи в скобках указан и тип олимпиады (цифру 1 или 2), и классы, в которых задача предлагалась. Иначе говоря, номер задачи в книге имеет вид "123 (1; 7,8)" – при этом год восстанавливается по оглавлению.
Ещё одно "ноу-хау" авторов этой книжки – сверхкраткость ссылок при повторном использовании одной и той же задачи в другом году (да, для более "серьёзных" олимпиад сам факт повторного использования задач достаточно редок, но тем не менее, прецеденты имеются и в Москве, и в Санкт-Петербурге). Вместо нового номера и отсылки "см." в саратовской книге просто вставляется в соответствующий год исходный номер задачи (без текста условия, – только число).
IV. В каком порядке приводить задачи в книге?
Неужели не в "естественном"? Какие могут быть аргументы против естественного порядка – внутри каждой олимпиады сначала привести по порядку все задачи самого младшего класса, потом следующего, и так далее?
Разумеется, если в задачнике сохранены все три уровня структуры, то именно так и надо делать. А если уровня "класс" нет?

Я веду кружок

15 Sep, 16:55


подборка математических игр, рекомендованных чуть ли не Еврокомиссией :) Там в конце есть ссылка на их сайт math-games.eu, но он у меня почему-то не фурычит

https://ec.europa.eu/programmes/erasmus-plus/project-result-content/0370196e-00f3-44d6-88e8-11c2587163fe/Math-GAMES%20IO2%20EN.pdf

Я веду кружок

09 Sep, 09:35


Придумал детям аж 8 однотипных задач на складывание симметричных фигур.
Все задачи строго одинаковы. Даны ТРИ равных фигурки, нужно сложить из них фигуру, имеющую центр или ось симметрии.

Картинка для вырезания фигурок вот такая

Здесь в центральной части (выделенной более жирными границами) Г-тетрамино и P-пентамино, а левые и правые части содержат по 6 разных гексамино. Итого 8 фигурок по две штуки каждой. Если распечатать картинку трижды (на трех листах бумаги, без печати на обороте) и вырезать по границам - у вас получится по два экземпляра каждой задачи-головоломки.

Почти все задачи с гексамино имеют единственные решения. Исключение - гексамино-лесенка, у которой масса решений с центром симметрии. Но зато у нее есть единственное решение с осью симметрии - и его непросто найти.

Я веду кружок

08 Sep, 11:07


ТУРНИР 7-9 КЛАССОВ. Опубликовано инф. сообщение и открыта регистрация: https://kostroma-open.info/20241027inf.html.

Я веду кружок

28 Aug, 05:54


Открылась долгожданная регистрация на осенний Турнир Мёбиуса.

Приглашаем к участию школьников 4-7 классов! Удобное место проведения в ближнем Подмосковье, много авторских задач, известные жюри, жаркие матбои и новые мат.игры. 🔥

17-21 ноября 2024 г.

Регионам при необходимости предоставляются скидки.
https://moebiustour.ru/

Я веду кружок

27 Aug, 12:52


🌟 Приглашаем учителей открыть кружки по олимпиадной математике вместе со Школково 🌟

Хотите вдохновлять своих учеников на достижения в олимпиадной математике и развивать их способности?

Тогда заполняйте форму, присоединяйтесь к программе всероссийского математического кружка Школково и становитесь частью проекта, где каждый талант будет раскрыт👉https://3.shkolkovo.online/level-up/connection?utm_source=tg&utm_campaign=shkolkovo_teachers

Что вас ждет?

🎯Ведение кружка в паре с преподавателем Школково
🎯Доступ ко всем обучающим материалам
🎯Менторство от опытного наставника
🎯Бесплатные КПК на 120 часов с сертификатом гос.образца

Мы уже открыли 80 кружков по всей стране и не собираемся останавливаться💪 Подключайтесь! Будем вместе развивать олимпиадное движение в вашем городе и вдохновлять новое поколение математиков!

📅 Подробности: https://3.shkolkovo.online/olymp-math/groups?utm_source=tg&utm_campaign=shkolkovo_teachers

Я веду кружок

23 Aug, 18:59


📣 Открытый семинар Е.Ю. Ивановой для учителей начальной школы

Иванова Елена Юрьевна – учитель математики, один из основателей и руководителей Творческой лаборатории «2х2». Обладатель Грантов Москвы и Грантов Президента в области образования. Участвовала в подготовке медалистов Международной математической олимпиаде. Автор методических разработок, статей по занимательной математике и учебника по математике для начальной школы.

Семинар пройдёт 27 августа 2024 года в 15:00 по адресу ул. Нагорная, 18к2.

Елена Юрьевна представит учебник для 1-4 классов по математике и расскажет о своей новой методике преподавания в начальной школе: сложная математика, рассказанная простым языком, помогает понять устройство мира без формул и алгоритмов.

Приглашаем учителей начальных классов и преподавателей кружков. Количество мест ограничено.

Для участия обязательна регистрация по ссылке: https://forms.yandex.ru/u/66c74fb590fa7b0efc2c9273/

Я веду кружок

21 Aug, 15:20


🌱 Друзья! Меня зовут Филипп Погорелов, я веду математический кружок.

Я приглашаю вас на онлайн-семинар по книге «Свобода учиться» Питера Грея для учителей (не только математики), родителей и единомышленников.

Как построить занятие так, чтобы поддерживать и воодушевлять, но в то же время не лишить свободы действий и радости самостоятельных открытий?

Как создать игровое настроение, необходимое для раскрытия творческих и логических способностей?

После обсуждения книги — обмен опытом в формате свободной дискуссии!

Участие свободное. Написать мне можно так

: эта пятница, 23 августа, 19:00 (Берлин) / 20:00 (Киев, Москва).

Ссылка для подключения
Идентификатор: 84391389643
Код доступа: 626949

Запись семинара будет выложена тут.

(Буду очень благодарен за репост приглашения! ❤️)

Я веду кружок

07 Aug, 17:34


🚀 Уважаемые коллеги, тех, кому интересна математика и машинное обучение, приглашаем Вас принять в неформальном проекте.

Минимальное требование - Вы знакомы с Питоном, и у Вас есть несколько часов свободного времени в неделю. (Альтернативно - можно не знать Питон, но хорошо знать теорию групп (в идеале GAP,SAGE).) Задача проекта - применить машинное обучение к теории групп. Целью проекта является написание статьи в хорошем журнале, участники - соавторы. Другим бонусом будет являться - приобретение навыков по современным методам нейронных сетей, Reinforcement Learning и т.д.

Если Вам интересно участие - напишите @alexander_v_c (Александр Червов, к.ф.-м.н. мехмат МГУ, 25 лет math&DS, Kaggle, Scholar, Linkedin).
Чат для обсуждений: тут .
Вводный доклад тут.
Пояснения по RL части тут.

Краткая суть задачи может быть описана несколькими способами - нахождение пути на графе от вершины А до вершины Б, но размер графа 10^20-10^50 - обычные методы не применимы. Решение пазла типа Кубика Рубика. Задача близка к прошедшему конкурсу Каггл Санта 2023. Математически - разложение элемента группы по образующим. Математические пакеты, которые частично могут решать эту задачу - GAP,SAGE.

Достигнутые результаты - уже сейчас мы можем за минуты делать то, что авторы работы DeepCube делали за 40 часов на многих GPU.

Я веду кружок

04 Aug, 06:58


В нашем чатике обсуждается вопрос «как так вышло, что некоторая интересная математика, вполне посильная детям, почти выпала из математических кружков».

В качестве примера назвали теорию групп.

Два вопроса.
1) конкретный. Что из теории групп можно и нужно давать на кружке?

2) какая еще тематика тоже незаслуженно подзабыта?

1,879

subscribers

27

photos

23

videos