Техносфера, подъем! @tchpd Channel on Telegram

Техносфера, подъем!

@tchpd


Не просто канал о технологиях, инновациях и промышленности. Мы — сообщество молодых проектантов, которые хотят расти, развиваться и вносить реальный вклад в процесс рационального освоения окружающего пространства вместе.

Связь с каналом: @tech_askbot

Техносфера, подъем! (Russian)

Канал "Техносфера, подъем!" - это не просто еще один источник информации о технологиях, инновациях и промышленности. Это сообщество молодых проектантов, которые стремятся к росту, развитию и внесению реального вклада в процесс рационального освоения окружающего пространства. Здесь вы найдете обзоры последних технологических достижений, погружение в мир инноваций и вдохновляющие истории успешных проектов. Мы верим, что будущее принадлежит тем, кто готов идти в ногу со временем и искать новые пути развития. Присоединяйтесь к нам и станьте частью этого захватывающего путешествия в мир технологий!

Для связи с каналом: @tech_askbot

Техносфера, подъем!

06 Nov, 12:55


⚡️Катализаторы: прошлое и будущее

Очень интересной становится для ученых тема проектирования каталитических систем. Так, в Тюменском университете на научной конференции решили создать рабочую группу для «инжиниринга каталитических процессов», а в новосибирском НЭТИ даже синтезировали катализаторы для получения водорода и углеродных наноматериалов из метана. Подобная активность приводит к мысли о том, что если в стране существует около десятка научных центров во главе с Институтом катализа, то технических проблем с производством катализаторов для промышленных технологий не должно быть вообще.

Однако это совсем не так. Зависимость от импортных поставок катализаторов для переработки углеводородов и другого сырья сохраняется уже много лет практически для всех отраслей промышленности, что свидетельствует о мнимости всей прошлой научной деятельности и сомнениях в будущей.

⚡️По мнению экспертов портала «Техносфера, подъем!», причина незаметной роли науки в развитии промышленных технологий катализа кроется в разнице приоритетов. Инженер-технолог промышленного объекта считает, что устойчивость производственного процесса обеспечивается пусть старенькой, но базовой технологией производства продукта, а ученый-химик полагает, что «волшебной палочкой» для интенсификации старой технологии является его новый катализатор, полученный в лаборатории.

При этом период перехода от лабораторных результатов к промышленному внедрению любого нового катализатора составляет более 10 лет, что совсем не гарантирует сохранения свойств селективности этого катализатора в процессе эксплуатации старой технологии, в структуре которой всегда присутствуют неизвестные ученому источники опасности и затрат.

Эта грубейшая методологическая ошибка приводит к тому, что около тысячи патентов различных «каталитических систем» даже не читают, а катализаторы приобретают по старинке за границей, обосновывая это их экологичностью и надежностью. Получается, бюджетные средства тратятся дважды на одно и то же: на разработку каталитических систем и на их приобретение за границей. При этом базовые технологии получения конечных продуктов, независимо от того, каким способом мы их интенсифицируем, так и остаются затратными и опасными, старея морально и физически. Это очень похоже на старый ржавый замок, к которому подбираются все новые и новые ключи и отмычки.

❗️Новое поколение ученых и инженеров уже думает иначе и предлагает решать застарелую проблему не развитием «химии катализа», а созданием биотических и волновых методов переработки сырья в продукт в реакторах с регулируемой производительностью и без явного стремления к интенсификации процессов. Что касается строительства «катализаторных фабрик», то надо полагать, что традиционные технологии их изготовления должны быть изменены на альтернативные, более простые, мобильные и компактные, способные быстро производить индивидуальные компоненты по индивидуальному заказу непосредственно рядом с базовой технологией.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

02 Nov, 15:53


❗️Премия за полезность и рациональность

Каждый представитель российского научного сообщества всегда имел и сегодня имеет возможность оценить свой труд по критериям подлинности, полноты и полезности для общества.

Ученые, чьи идеи и технические решения соответствуют этим критериям, становятся в России лауреатами авторитетной премии митрополита Макария.

Вот уже полтора века Макарьевская премия вручается за здравый смысл научного труда и умение ученого отличить истинное от неистинного.

В этом году премию присудили 26 ученым России. Их имена известны, результаты их труда представлены в российских журналах и монографиях.

💙Редакция портала «Техносфера, подъем!» от души поздравляет лауреатов и отмечает в первую очередь креативность их научных идей и востребованность технических решений для проектного инженерного сообщества.

💙Для всех нас очень важны, например, знания о том, что истинные человеческие свойства (взаимность, альтруизм) являются базовыми условиями для формирования устойчивой кооперации в любом проекте. Оказывается, что не юридические обязательства, а только репутация ученого или статус высокоинтеллектуального инвестора могут быть самой важной и самой надежной гарантией успешности процесса хозяйствования. Сегодня это экспериментально доказанные факты.

💙Среди лауреатов — историки, математики, материаловеды, кибернетики Казани, Москвы и Мурманска. Достойными престижной православной премии признаны около десятка рациональных технологий сибирских ученых, основанные на простых биологических методах, дешевых сорбентах и универсальных катализаторах.

💙Все это уже сейчас позволяет отказаться от пестицидов в сельском хозяйстве и избавиться от источников затрат в добывающих и перерабатывающих промышленных технологиях ради того, чтобы производственные системы прошлого века больше не генерировали негативные последствия для наших будущих поколений.

➡️ Подписаться на канал

Техносфера, подъем!

01 Nov, 09:15


⚡️Искусственный фотосинтез заработал

Научную идею о разработке электроники из атомов и молекул многие годы пытаются решить ученые всего мира. Все это время вопрос создания работоспособных электронных приборов молекулярных размеров упирается в техническую проблему управления положением и созданием контактов к одиночной молекуле.

💙В 2022 году решение было найдено, и российские ученые объявили о создании технологического процесса соединения углеродной нанотрубки с органической молекулой флуоресцентного белка. Получился биоэлектронный фотоэлемент на основе одной молекулы светящегося белка, соединенного с углеродной нанотрубкой. Подобная система, работающая по механизму фотосинтеза, изменяет свои электронные свойства под действием света и может исполнять функцию запоминающего устройства.

💙В этом году по такой технологии ученые уже создали материал, реагирующий на заданную длину волны в диапазоне видимого спектра и преобразующий свет в химическую энергию. Уникальность его в том, что преобразование происходит вообще без потерь. Это наш «первый» активный элемент с функцией «вкл.-выкл.», управление в котором осуществляется одним электроном, что приводит даже к фантастическим идеям об отказе от электрических цепей.

Многообразие таких белков с различными временами свечения и новая технология их соединения с углеродным проводником позволяет конструировать системы искусственного фотосинтеза с функциями молекулярных выпрямителей, диодов, транзисторов и логических ячеек, управляемых светом.

⚡️По мнению экспертов портала «Техносфера, подъем!», можно уверенно говорить, что в России сформировалось устойчивое сообщество ученых, увлеченных молекулярной электроникой и нацеленных на создание миниатюрных биотических производственных систем. А эта цель уже требует приглашения в команду высокоинтеллектуального инвестора.

Пока команда преодолела только первую и самую главную трудность — технологическую. Дальше требуется научиться выборочно модифицировать различные участки нанотрубки, найти способы регулировать их размеры и изменять пространственное положение в схеме, чтобы иметь полноценный технологический процесс создания всего спектра активных и пассивных электронных устройств со сверхмалыми размерами.

Сможет ли это быстро сделать команда физиков, еще непонятно, но надо верить, что сможет, как это получилось у биологов. Известно, что в молекулярной биологии уникальные свойства флуоресцентных белков востребованы уже не как объект фундаментальной науки, а в качестве рабочих элементов медицинских методик лечения.

Такие маленькие научные победы непременно стимулируют ученых, инвесторов и заказчиков к созданию большего, полезного и рационального. Как говорится, флаг вам в руки.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

30 Oct, 10:04


❗️Начинать надо с технического задания

Разница между привозным продуктом и собственным в том, что его производство на собственном сырье, собственными технологиями и собственными руками будет всегда управляемым по качественным параметрам и регулируемым по объему и рентабельности. Привозить что-то можно и даже нужно, но не для промышленного производства, а лишь для пробы и сравнительной оценки.

Только при таких условиях любое хозяйство становится функционально устойчивым к внешним угрожающим факторам. Хозяин такой производственной системы обязан думать не только о текущих производственных показателях, но и формировать ее устойчивое будущее, концентрируя вокруг себя научную элиту и формируя образовательную политику. Постоянное взаимодействие с учеными не только расширяет кругозор инженера-технолога, но и еще превращает его из стороннего наблюдателя процесса старения технологий в активного созидателя новых и более совершенных. К сожалению, подобная логика русского хозяйствования работает еще не везде и не всегда.

Как бы хотелось, к примеру, чтобы результаты научных трехлетних исследований «Сколтеха» в области электрохимических систем были востребованы хотя бы у одного из всего десятка их «лучших российских производителей». Но не получается пока.

⚡️По мнению экспертов портала «Техносфера, подъем!», на то есть две видимых причины:

💙что бы ни творили наши самозанятые и уважаемые ученые при совершенствовании уже кем-то созданных аккумуляторов, всегда получается, что при улучшении какого-то одного параметра ухудшаются остальные;

💙нынешнее поколение хозяйственников «батарейной индустрии» не научено грамотно формировать нужные требования технических заданий ученым на модернизацию морально устаревших иностранных технологических процессов.

Может, действительно надо начинать с обучения их технической грамотности и методам стимулирования труда ученого на создание российских технологий? В этом должны быть заинтересованы сегодня все стороны.

У нас же есть отличные примеры, когда практически аналогичные результаты в области электрохимии реализовали ученые Уфимского университета науки и технологий, как говорится, «с колес», сразу на двух машиностроительных объектах для одновременной полировки и шлифовки металлов любой твердости. Технологию русского инженера Е. И. Шокальского специалисты действительно довели до совершенства и сделали свой собственный «станок-робот», исключив из прошлых технологий практически все возможные источники затрат и опасностей. И главное — больше мы не будем покупать чужие технологии «DryLyte».

Пора аналогичным образом создавать собственные роботизированные производства всех типов аккумуляторов, не зависимые от чужих источников сырья и оборудования. Начинать надо с мечты о наших аккумуляторах будущего и с формирования грамотного технического задания.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

25 Oct, 16:18


#ТерминыИопределения

⚡️Что такое «техническое решение»?

В основе любых технических решений, которые разрабатывает инженер, должна быть его идея что-то создать, улучшить, усилить, увеличить, уменьшить или преодолеть. Вариантов, как это сделать без негативных последствий, должно быть множество, из которого выбирается самый рациональный и полезный. Такое решение будет называться уже проектным, и оно необязательно должно быть экономически выгодным для кого-то. Надо понимать, что если решение инженера-проектанта рационально, то оно будет полезным всегда и для всех. Поэтому современные технические решения не должны замыкаться на устаревших нормативных показателях, основанных на вероятностных расчетах. Иначе это будет не разработанное техническое решение, а копия того, что уже было.

💚Например, в добывающих технологиях все технические решения 20-го века сводятся к раскалыванию, сепарации или измельчению, т. е. к вычитанию малого из большого, но с остатком. В перерабатывающих технологиях мы, наоборот, что-то смешиваем, свариваем, скручиваем, паяем, напыляем, т. е. складываем в какую-либо форму и тоже с остатком в виде отходов, издержек, затрат и опасностей.

Получается, инженер при разработке технических решений ограничивал себя двумя простейшими математическими действиями, в результате выполнения которых всегда образуется не нужный никому «остаток». Очевидно, что новое поколение инженеров-технологов и инженеров-исследователей обязано учиться разрабатывать варианты технических решений, основанных не на «арифметике остатков», а на других математических алгоритмах, которые в проектной практике пока не применяются.

❗️Пора уже осваивать технологические алгоритмы, основанные на таких математических операциях, как деление, умножение, интегрирование, логарифмирование и дифференцирование применительно к материальным, информационным и энергетическим ресурсам, например, региона. Эти математические алгоритмы всегда точны, исключают образование остатков и являются завершенными, чего не скажешь о технологиях прошлого века. Природные биотехнологии нам даже подсказывают использовать вместо алгоритма сложения или вычитания операцию умножения массы какого-либо материального ресурса на темп его разложения биотой Земли. Если соблюдать баланс в таких операциях умножения и складывать их в технологический процесс, то он будет похож на математическую операцию интегрирования с бесконечно малыми слагаемыми остатков.

Надо еще учесть, что ни одно техническое решение не будет доведено до уровня проектного и останется никому не нужным патентом, если будет касаться только, например, изготовления материала или только программного обеспечения без его привязки к конкретной машине или механизму.

Еще практика показывает, что до уровня проектного доходит только тот вариант технического решения, который разработан командой как минимум в составе материаловеда кибернетика, энергетика и технолога. Главное в этом творческом процессе — не забыть еще и про математика.

➡️ Подписаться на канал

Техносфера, подъем!

24 Oct, 08:39


⚡️Какие аккумуляторы, такая и наука

За последние десять лет из информационного пространства как-то незаметно исчезли все сообщения о развитии научных школ в области электрохимических накопителей энергии. Вместо комплексного подхода к проблеме удовлетворения требований каждого потребителя энергии наблюдается процесс, ограничивающий научные исследования только поиском катодных и анодных материалов для металл-ионных аккумуляторов. Но мы же их не производим, а без пошлины завозим из-за границы, как продукцию девятого класса опасности. При этом у нас даже теория зарядки АКБ до конца не завершена. Получается научная гонка без целей развития собственных промышленных технологий. Значит, история зависимости от других нас ничему не учит.

💚Лидируют в такой никому не нужной научной гонке ученые Сколтеха, которые еще четыре года назад заявили о создании натрий-ионного аккумулятора в лаборатории, насыщенной зарубежным оборудованием. За прошедшее с тех пор время в Китае уже работает их промышленное производство, а у нас, при наличии в соседях фонда «Сколково», который активно поддерживает развитие новых технологических компаний, все остается на уровне патентов.

💚Также без практической цели работают материаловеды Самарского университета, которые уже несколько лет оценивают ионную проводимость различных минералов для «ускорения» разработки перспективных источников энергии. Ограничивают свой потенциал и инженеры МГТУ им. Баумана, предлагая схемы защиты пользователей от взрыва только литий-ионных батарей, хотя понятно, что свой подход к проблеме при желании они смогли бы распространить и для нейтрализации источников опасности любых типов АКБ.

⚡️Экспертам портала «Техносфера, подъем!» неизвестно о тех ученых, которые увлеченно занимаются совершенствованием кислотно-щелочных аккумуляторов. Хотя потребность в них остается, а спрос на накопители энергии, резервные источники питания и пускатели двигателей внутреннего сгорания даже увеличивается.

Непонятно кто убедил ученых в том, что все 217 тысяч отечественных электромобилей к 2030 году будут оснащены литий-ионными батарейками. И все верят в непонятное будущее, забывая про реальное настоящее. Занимаясь достаточно узкой проблемой, ученые не замечают новых возможностей развития российской школы электрохимии, в том числе за счет внедрения волновых методов воздействия на структуру электролитной массы АКБ. Такое направление исследований для ученых будет гораздо интересней, а для всех потребителей —рациональным и полезным. Тем более что промышленные технологии кислотно-щелочных аккумуляторов у нас есть, и они нуждаются не только в патентном, но и в научном сопровождении.

Очевидно, что если не проектировать источники энергии в комплексе с машинами и механизмами, для движения которых они и нужны, то может получиться так, что мы потеряем отработанные за прошедшие сто лет собственные дешевые технологии одних аккумуляторов, толком не создав других.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

22 Oct, 08:51


⚡️Дайджест научных идей

За последние две недели октября университеты России сообщили о своих новых результатах. Их всего семь, но все достаточно уникальные и требуют обязательной реализации.

1️⃣Пермские математики, несмотря на то что, абсолютное значение дисбаланса турбин и его местоположение не поддаются вычислению, все-таки смогли найти способ определять и аэродинамический дисбаланс лопастей, и массовый дисбаланс ротора. Теперь требуется тестирование математической модели на показателях работы конкретных турбин.

2️⃣Ученые НГУ подтвердили свою идею о том, что строительные материалы можно создавать и без цемента. Для этого нужно сначала измельчить техногенные отходы, затем нагреть порошок и смешать его с водным раствором различной кислотности. Оказывается, строить можно просто, дешево и быстро.

3️⃣Студенты Тихоокеанского университета год назад создали Конструкторское бюро и уже разработали три технических решения, реально востребованные на промышленных объектах региона. Состав проектной команды расширяется, опыт рационального проектирования нарабатывается, а будущее становится определенным. Именно так знание превращается в понимание.

4️⃣Томские ученые доказали, что авиационное топливо можно получать из различных видов масел и отходов нефтепереработки с использованием стандартного оборудования для каталитического крекинга.

5️⃣Новгородские инженеры предложили использовать метод лазерного сканирования для контроля состояния дорожного покрытия и линий электропередач. Получается быстрее и дешевле.

6️⃣Идея о том, что сенсор должен не только детектировать световые или электрические сигналы, но и выполнять функции их обработки и хранения, реализована командой инженеров-исследователей трех университетов в конструкции микрокристалла перовскита на гибкой подложке. Получается, искусственный глаз можно сделать зрячим.

7️⃣Проектная команда Новосибирского университета генерирует и достаточно успешно реализует научные идеи для сокращения источников затрат в аграрной промышленности региона. Разработаны тест-системы оперативного контроля газового состава и структуры почв, а еще апробированы составы чистых удобрений на основе природных компонентов. И никакой химии.

Все октябрьские новации схожи в главном: вместе с конструкцией, формой и структурой проектируемого объекта обязательно разрабатывается и рациональная технология его изготовления.

➡️ Подписаться на канал

Техносфера, подъем!

21 Oct, 10:35


⚛️ Инженер как герой нашего времени

У каждого инженера есть собственная образовательная траектория, которая начинается в школе и продолжается всю его сознательную жизнь.

Высшая школа, формируя образ каждого своего студента-выпускника и предлагая ему набор знаний и компетенций, ставит целью добиться его конкурентоспособности на рынке труда и успешности в профессиональной сфере. При этом масштабы рынка труда не оговариваются, так как созданный механизм карьерной навигации предполагает, что студент сам должен определиться с будущим местом работы. На самом деле рынок труда для всех выпускников технических вузов ограничен должностными обязанностями «инженера-технолога» или «инженера-исследователя». Других вариантов нет.

В первом случае инженер ежедневно сталкивается с неожиданными для себя проблемами (аварии, авралы, срывы плана поставок и т. д.). Во втором — множество научных статей, патентов, диссертации, конференции и сожаление о том, что все это не реализуется, а лежит в столе.

💙Удовольствия от такой работы мало, и через некоторый период мытарства новоиспеченный инженер начинает искать более понятное для себя место работы. Так формируется еще одна проблема дефицита кадров, причина которой кроется в отсутствии конкретных задач обучения. Вместо того, чтобы каждый выпускник вуза на десять лет вперед имел конкретные задачи «создать», «разработать», «внедрить» или «модернизировать», его все пять лет обучения призывают «коммерциализировать» научную идею, создавать «интеллектуальную собственность» и писать статьи. Поэтому модные сегодня проекты инженерных школ, инжиниринговых центров, международных лабораторий и научно-образовательных центров выглядят в глазах студента одноразовой компанией и касаются только студенческого периода его жизни.

Без понимания конкретных технологических и научных задач в своем ближайшем будущем знания студента становятся рафинированными, т. е. поверхностными и непригодными для активного участия в проектной и производственной деятельности. Плохо и то, что инженер-выпускник верит всему, что написано в учебниках и нормативных документах, не подвергая информацию малейшему сомнению, не анализируя ее и не вникая в ее суть. А это уже опасно и для него, и для производства.

⚡️По мнению экспертов портала «Техносфера, подъем!», проблемы в образовательной системе сформированы искусственно, а значит, решаемы.

На самом деле студенту технического вуза сегодня надо знать алгоритм аудита технологий прошлого века и владеть методологией проектирования технологий будущего. Именно знания в этих научных дисциплинах сделают его героем на производстве и в проектных организациях. Практика показывает, что инженер-технолог должен уметь выявлять и ликвидировать в структуре промышленных технологий прошлого века источники затрат и опасностей, а инженер-проектант в своем творчестве должен руководствоваться принципами полезности продукта и рациональности технологии его производства. Такие инженеры-герои будут всегда востребованы на любом рынке труда и полезны для общества.

#МнениеРедакции

➡️ Подписаться на канал

Техносфера, подъем!

18 Oct, 13:51


❗️Учитывая большой интерес к вопросам безопасной эксплуатации технологий прошлого века и методологии проектирования современных производственных систем и промышленных технологий будущего, представляем видеоинформацию о встрече доктора технических наук Куликова А.В. с учеными, студентами и преподавателями БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова.

Ждем ваших комментариев и предложений!

➡️ Подписаться на канал

Техносфера, подъем!

18 Oct, 08:50


Прибыль себе, а отходы детям

В печати публикуется все больше научно обоснованных суждений о глобальности и остроте проблемы образования отходов. В научных исследованиях прослеживается явная тенденция поиска новых источников исходного сырья для перерабатывающей промышленности. Вместо «привозного» и «ископаемого» минерального сырья ученые предлагают получать «свое» из тех отходов, которые упорно продолжают генерировать «бизнес-группы».

Практически ежемесячно портал «Научная Россия» сообщает (непонятно для кого и зачем) информацию о том, что ученые создали новые экономичные технологии получения полезного продукта из отходов. Например, в октябре ученые Новосибирска предложили две таких технологии.

💙Первая решает вопрос переработки так называемых «попутных» углеводородов в два полезных и востребованных продукта — углеродные нанотрубки и водород. Причем катализатор для такого процесса может синтезироваться самым дешевым методом «растворного горения» в одну стадию за 15 минут непосредственно на месте переработки отходов.

💙Второй метод ученых НГУ позволяет рационально использовать крупнотоннажные техногенные отходы горнодобывающей индустрии, строительной отрасли и энергетики для производства строительных материалов без использования цемента.

Подобные технические решения расширяют возможности бизнеса за счет создания компактных технологических процессов с регулируемой производительностью и широкой номенклатурой продукции на основе отходов. Такие производственные системы можно достаточно выгодно размещать на полигонах, хвостохранилищах, шламонакопителях, рудниках, шахтах и объектах теплоэнергетики. Пока у нас нет позитивных примеров того, что кто-то из российских предпринимателей поставил ученым задачу на переработку накопленных отходов и выделил инвестиции на их превращение в ресурс развития собственных промышленных объектов. Неужели для них деньги дороже жизни детей и внуков?

Так как российским предпринимателям подобные новации неинтересны, то ученые продолжают публиковать результаты своих расчетов и экспериментов в зарубежных журналах, даже несмотря на то, что исследования финансируются Российским научным фондом. Жалко трудов и усилий ученых, которые свои новации предлагают не российским, а иностранным специалистам.

⚡️По мнению экспертов портала «Техносфера, подъем!», для того чтобы десятки новых научных идей и технических решений не оставались в статусе патентов, статей и диссертаций, необходимы законодательные нормы и ограничения, обязывающие каждого руководителя промышленного объекта относиться к собственным производственным отходам как к исходному сырью для развития. Для будущих поколений это гораздо важнее, чем получение быстрой прибыли от интенсификации добычи или выручки от продаж. Да и ученым будет хоть какая-то радость.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

16 Oct, 11:07


⚡️Про германий и технологии его получения

Германий — это сырье для производства люминофоров, сенсоров, тепловизоров, дефектоскопов, спектрографов, термографов, пирометров, а также для косметики, волоконной оптики и беспроводной связи. О том, что такой химический элемент с универсальными свойствами существует, говорил еще Д. И. Менделеев в середине 19-го века.

💙Пока используется только одно уникальное свойство германия — как преобразователя инфракрасного излучения в электрическую энергию. Для этого требуется особо чистый германий, технологии получения которого у нас считаются «утерянными». Возможно, кому-то действительно гораздо выгоднее приобретать зарубежные спектрографы за десятки миллионов рублей, чем восстанавливать старые химические и гидрометаллургические технологии переработки германиевого сырья.

Другие более интересные свойства германия и его соединений (катализирующие, антиоксидантные и регенерирующие) пока проверяются в научных лабораториях и оцениваются для применения в металлургии, химии и медицине.

💙Главным препятствием для активного использования всего спектра свойств германия и его соединений остается промышленная технология. Ее до сих пор у нас нет, несмотря на огромные сырьевые ресурсы, пропадающие в отвалах ТЭЦ и медно-никелевых рудников.

В прошлом году ученые подтвердили возможность получать монолитный аэрогель на основе аморфного диоксида германия только в лаборатории. Метод оказался длительным (более двух недель) и трудоемким, но зато в патенте была показана возможность регулирования удельной площади поверхности монолитных 3D-материалов от 310 м2/г до рекордного значения в 500 м2/г.

💙В этом году, к чести ученых-химиков ИОНХ РАН, им удалось существенно упростить технологию получения аморфных и кристаллических аэрогелей на основе диоксида германия и получить их миллиграммы при атмосферном давлении без использования сверхкритического углекислого газа.

Это уже дает надежду на создание мобильных и компактных производственных систем, размещаемых непосредственно в местах хранения сырья. В основе таких систем должна быть отечественная промышленная технология изготовления люминесцентных, каталитических и анодных материалов на основе диоксида германия.

Смогут ли наши ученые трансформировать свою научную идею в одностадийную промышленную технологию, еще непонятно. Но ясно одно: кроме них этого сделать никто не сможет.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

14 Oct, 08:57


📚 Библиотеки знаний инженера

Современный уровень знаний о методах накопления и хранения информации, а также прогресс в понимании физиологических механизмов ее восприятия человеком дают основания говорить о том, что настала пора серьезно заняться созданием в университетах страны функциональных библиотек инженерных знаний.

То, что рекомендует ГОСТ Р57309-2016, не совсем годится для проектанта производственных систем 21-го века. Этот документ, являясь переводом англоязычной версии чужого стандарта, рекомендует создавать «каталог продукции», «библиотеку проектов», «интеллектуальные словари» и «классификаторы» по принципу алфавита или объекта. Инженеру-проектанту достаточно трудно найти в современных «википедиях» и книгохранилищах то, что нужно для разработки рациональных технических решений. Огромное количество созданных объектов ведет к расстройству внимания и к упущению в их структуре источников затрат и опасностей, которые генерируют негатив. К тому же вся информация о составных элементах проектируемого объекта (материалы, энергия, системы управления) и технологии его изготовления рассредоточена, противоречива и носит общенаучный характер.

Вместе с тем потребность в постоянно обновляемых дайджестах о проектных задачах, научных идеях и вариантах их технического исполнения сегодня очевидна, так как и студенты, и выпускники вузов горят желанием сделать что-то новое, полезное и рациональное.

Есть мнение, что в формировании университетских библиотек инженерных знаний должны участвовать психологи, физиологи и кибернетики. У экспертов два довода в пользу выбора такого состава команды.

💙Во-первых, алгоритм функционирования библиотеки должен строиться на методах императивного программирования, что позволяет сосредотачивать всю научно-техническую информацию только в трех ее базовых разделах: «Материалы», «Энергогенерирующие устройства» и «Система управления». Для проектанта этого достаточно, чтобы на основе своей научной идеи сформировать образ будущего технического комплекса, оценить все варианты технических решений и технологию производства продукта.

💙Во-вторых, с точки зрения физиологии библиотека знаний должна регулировать информационные потоки о параметрах окружающего пространства и стратегиях его осваивания человеком так, чтобы познавательная функция студента росла, а его разум концентрировался не на запоминании старых терминов и паттернов, а на поиске новых решений конкретной интеллектуальной задачи. Именно понимание и осознание сути технической или социальной проблемы активизирует в мозге человека так называемую нейронную сеть оперативного покоя (дефолт-система мозга), что и приводит к нетривиальному решению или гениальному открытию.

Именно такая библиотека знаний требуется сегодня в каждом университете для его выпускников — инженеров-технологов и инженеров-исследователей.

#МнениеРедакции

➡️ Подписаться на канал

Техносфера, подъем!

10 Oct, 08:24


⚡️О производственных системах прошлого и будущего

Вчера, 9 октября, доктор технических наук, эксперт нашего канала «Техносфера, подъем!» Александр Вениаминович Куликов провел лекцию для студентов БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова на тему «О производственных системах прошлого и будущего».

На встрече обсуждались два важных вопроса. Первый касался методики выявления в промышленных технологиях источников затрат, издержек и опасностей. Были приведены конкретные результаты технологического аудита так называемых «опасных» технологий, технические решения ликвидации или нейтрализации трех источников опасности. Вместо «вечного обеспечения промышленной безопасности» предложена методика технологического аудита.

Второй вопрос лекции был связан с методологией проектирования новых безопасных и рациональных технологий. Было подчеркнуто, что рациональность в данном случае означает отсутствие негативных последствий при эксплуатации технологий для существующих и будущих поколений жизни.

❗️Сегодня главная задача проектантов заключается в возрождении и развитии российской методологии проектирования, которая позволит создать более эффективные и безопасные системы. Важно не только генерировать научные идеи, но и доводить их до практической реализации. Это ключевой аспект для успешного внедрения инноваций в производство.

➡️ Подписаться на канал

Техносфера, подъем!

08 Oct, 08:19


⚡️Дайджест научных идей

За последние 10 дней стало известно о семи научных идеях, реализуемых в университетах страны для устранения источников опасностей и затрат в промышленных технологиях.

1️⃣Идею сжигать в кислороде углекислый газ, образующийся на ТЭЦ, изучают инженеры НИУ «МЭИ», обосновывая это чистотой атмосферы и дополнительным источником тепла, электричества и водорода. Прототип камеры сгорания готов, а экспериментальное подтверждение планируют проводить на конкретных промышленных объектах.

2️⃣В НИТУ МИСИС работают над изготовлением простой, дешевой и устойчивой к внешним воздействиям солнечной батареи, способной генерировать электричество даже при низкой освещенности.

3️⃣Идея инженеров МАИ об изготовлении линейки электродвигателей мощностью от 1 до 100 кВт на одной технологической линии вызывает восхищение. В проекте участвуют реальные потребители, поэтому стоит ожидать его скорую реализацию и рациональность промышленной технологии.

4️⃣Идею использовать энергию лазера для увеличения ресурса деталей машин и механизмов реализовали саратовские ученые. Подтверждена возможность создания мобильных и компактных технических комплексов для увеличения износостойкости рабочих элементов горных машин в три раза.

5️⃣Идея химиков ПНИПУ использовать макулатуру в качестве сырья для производства бумаги и картона превращает бумажные отходы в ресурс развития целлюлозно-бумажных комбинатов.

6️⃣Биологи Новосибирского университета разработали технологию уничтожения пластика с помощью насекомых. Исследования показали, что 200 личинок моли за год могут «съесть» около 150 кг полимерных отходов, что делает грязную технологию их термического сжигания ненужной.

7️⃣Ученые Самарского политеха работают над безлюдной технологией очистки сточных вод. В модели управления процессом очистки учтены фундаментальные закономерности ферментативной кинетики, что позволяет адаптировать программу для любого промышленного объекта.

➡️ Подписаться на канал

Техносфера, подъем!

01 Oct, 11:10


❗️О формализме и инженерной безграмотности

Растущее число исследователей необычных свойств полимеров с отрицательной диэлектрической проницаемостью, легкой структурой и идеальным поглощающим действием демонстрирует возможности их применения в фильтрах, антеннах, радарах и беспилотниках в качестве микроволновых поглотителей. Мы уже рассказывали о создании прошлом году в Мордовском университете простого и дешевого самоклеящегося радиопоглощающего материала.

В сентябре текущего года появилась ошеломляющая информация про ученых УрФУ, которые совместно с «румынскими коллегами» якобы создали материал, способный не отражать, а поглощать электромагнитное излучение, «снижая мощность помехового электромагнитного излучения до 10 000 раз». Непонятная система измерения уровня мощности электромагнитного излучения не позволяет даже предположить, для защиты каких объектов и от каких источников изготавливается материал с такими свойствами.

Анализ статьи «международной группы ученых» в журнале Polymers, на которую делается ссылка в публикации, показывает, что все совсем не так. В публикации ученые вообще не говорят о том, что созданный композитный материал способен что-то поглощать или отражать. Исследования показали только, что добавление в состав пластикового композита наполнителей в объеме от 1,0 до 5,0% приводит к увеличению электропроводности композита почти в 50 раз.

Но ведь такие результаты были известны еще в прошлом веке! Более того, тогда советские ученые под руководством академика С. Н. Ениколопова объяснили возможные механизмы аномально высокой электропроводности полимеров и показали, что она зависит не только от степени армирования полимера частицами магнетита и графита, но и от их формы и технологии изготовления. Тогда же были апробированы три технологических метода для обеспечения равномерности распределения проводящих наполнителей по всему объему полимерной матрицы. Сегодня полная однородность достигается с помощью резонансно-волновых смесителей.

⚡️По мнению экспертов портала «Техносфера, подъем!», цели и задачи подобных публикаций довольно туманные, а достоверность результатов физико-механических испытаний образцов вызывает большие сомнения: требования ГОСТ 14236-81, которыми руководствовались ученые при проведении испытаний на универсальной испытательной машине INSTRON-3365, не распространяются на образцы пленок полимера, изготовленные из армированных материалов. А это уже говорит о формализме и инженерной безграмотности.

Судя по тому, что в соавторах у материаловедов УрФУ числятся румынские физики-ядерщики, а результаты выполненных исследований опубликованы только на английском языке, ожидать от таких «ученых» чего-то полезного для страны не приходится.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

30 Sep, 08:58


⚡️О токсичности

Чтобы начать проектировать устойчивую производственную систему, инженер должен знать состояние и динамику поведения всех элементов той области окружающего пространства, где планируются размещение технического комплекса и эксплуатация промышленной технологии. Так было всегда. К сожалению, сегодня, кроме информации о тектонике, магнитных и температурных полях, в перечень исходных проектных данных должны включаться и параметры токсичности воздуха, воды и грунта.

Причина усиления требований к проектам в том, что интенсивный процесс создания техносферы в прошлом веке с помощью подземных ядерных взрывов оказался нерациональным. Более того, ученые обещают, что негативные радионуклидные последствия прошедшего соревновательного этапа развития науки и техники будут сопровождать нас до конца 21-го века.

Если методы лечения человека и животных от избытка радиоцезия созданы (дезактивация и сорбция), то остановить процесс его постоянного воспроизводства в системе «почва–растение–вода» пока не получается. Мы еще до конца не знаем долговременный механизм распространения цезия по пищевым цепочкам, конечным потребителем в которой является человек. Поэтому, прежде чем размещать производственную систему в том или ином регионе страны, проектанту требуются достоверные научные данные о поведении этого радионуклида в условиях конкретного природно-климатического ландшафта.

⚡️По мнению экспертов портала «Техносфера, подъем!», одного проекта МГУ по еженедельному мониторингу потоков потенциально токсичных элементов для помощи проектанту явно недостаточно. Очевидно, что для пространственного развития страны нужна не просто модель, описывающая общие закономерности перераспределения радионуклидов, но и методы нейтрализации этого невидимого источника опасности.

Если ученые-атомщики в 60-х годах прошлого века выступали инициаторами строительства инфраструктуры с помощью «дешевых», как они утверждали, подземных ядерных взрывов, то сегодня они просто обязаны не хранить и накапливать отходы, а ликвидировать последствия ошибочных технических решений, большая часть которых была навязанной копией чужих идей.

Вполне логично, что именно для этой цели ученых сегодня наделили полномочиями «федерального оператора» страны по обращению с любыми отходами, в том числе высочайших классов опасности. Однако собственных научных идей и технических решений по ликвидации или нейтрализации радиоцезия как источника токсичности пока нет, если не считать патента на выявление загрязнений токсичными элементами труднодоступных участков методом космической радиолокации.

❗️Надо что-то делать, иначе реализация каждого нового проекта в любой точке территории даже при ее минимальной кадастровой стоимости будет требовать все больших издержек на защитные мероприятия от вездесущего цезия.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

25 Sep, 10:03


🔋Батарейные технологии

Есть очень хорошая информация о работе Батарейного технологического центра в Санкт-Петербурге. Оказывается, уже два года у нас отрабатывается отечественная технология изготовления полуфабриката (катодной массы) для трех видов аккумуляторных батарей: литий-ионных, натрий-ионных и твердотельных.

За это время химики научились синтезировать лабораторные объемы катодных материалов, используя китайское оборудование. Несмотря на грандиозные планы масштабировать технологию изготовления катодной массы до 10,0 тысяч тонн к 2030 году, инвестор (он же, видимо, и заказчик) пока не говорит о ее российских потребителях.

❗️Со стороны это похоже на рождение очень зависимой от множества факторов технологии изготовления катодного материала только для автомобильных аккумуляторов. Сегодня этого недостаточно. Практика показывает, что любая технология производства одного вида продукта на чужом оборудовании и на основе единственного источника исходного сырья превращает производственный объект в неустойчивую систему. Хотя давно известно, что из этого же сырья можно получить и долгоживущие аноды для хлорного электролиза, и субстраты для промышленной гидропоники, и многие другие полезные продукты.

Специалисты центра решают еще одну интересную задачу, связанную с переработкой аккумуляторных отходов и возвратом металлов в технологический процесс создания «никель-марганец-кобальтового» катода. Эту задачу шведы (компания Northvolt) как-то решили уже в прошлом году. Поэтому, чтобы не повторяться и не копировать, гораздо выгоднее будет вообще отказаться при изготовлении катодной массы от кобальта, который очень осложняет повторную переработку батарей.

Несмотря на все технические проблемы, Батарейный технологический центр создан и активно работает, наращивая свой потенциал и расширяя спектр решаемых задач в области материаловедения и управления процессами генерации, накопления и потребления энергии. В России таких центров высоких компетенций уже около десятка. Было бы очень важным их солидарное взаимодействие.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

24 Sep, 09:39


⚡️Источники энергии для производственных систем 21-го века

Право осваивать территории России принадлежит ее будущему поколению инженеров и ученых, которые когда-то должны задуматься о том, как это сделать рационально и с пользой для всех. Тенденция такова, что промышленные гиганты прошлого века с этой задачей справляются плохо. Стандартные методы производства с использованием конвейерных технологий не дают нужного хозяйственного эффекта. Долговая нагрузка предприятий сравнима с их годовой выручкой, а устойчивое функционирование целиком зависит от стабильности ресурсных потоков и быстро меняющихся запросов потребителей.

Одним из рациональных вариантов для ближайшего будущего являются мобильные и компактные производственные системы с автономной системой управления и местными источниками материальных и энергетических ресурсов. Об этом уже давно говорят металлурги, химики, а также производители сельхозпродукции и строительных материалов. Даже в космосе начали работать технические комплексы с технологией синтеза лекарственных субстанций в условиях невесомости.

Кроме компактности (не более 30 м2) и высокой подвижности, главными аргументами в пользу таких систем считаются их незаметность, дешевизна, простота и возможность регулирования объемов производства широкой номенклатуры продукции на основе ресурсов именно того региона, где размещается комплекс.

Чтобы все это заработало, требуется проектное технологическое сообщество, ориентированное не на копирование, а на создание собственных технологических алгоритмов, программного обеспечения и технологического оборудования с регулируемой производительностью. У нас еще никто не проектировал подобные технические комплексы, обеспечивающие непрерывное функционирование оборудования на земле в течение не менее 8,0 тысяч часов с перерывами на техобслуживание.

Но надо с чего-то начинать. Например, оценка уровня автономности и надежности источников энергии, созданных в наших университетах и научных центрах, подтверждает возможность создавать компактные производственные системы в каждом регионе самостоятельно. Для этого у нас есть необходимый научный задел и такие работающие прототипы, как:

💙долговременная «атомная батарейка» на основе различных изотопов;
💙дешевый натрий-ионный аккумулятор МИСиС;
💙гибкий термоэлектрический генератор МИЭТ;
💙проточные редокс-батареи РХТУ и МГУ;
💙гравитационные накопители энергии;
💙гидрогенераторы МЭИ с регулируемой мощностью.

На практике все эти новации толком еще никто не использует, но потребности в них реально существуют в регионах. Пора уже начинать действовать и видеть в «батарейной индустрии» новый энергетический ресурс развития еще не обжитых территорий. В этом случае у нас действительно получится что-то полезное и рациональное.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

20 Sep, 10:03


Информация для размышления

Сентябрьские сообщения с сайта «Научная Россия» о результатах научных исследований мы сгруппировали по четырем направлениям для понимания степени их практической реализации. Получилась такая картина:

Энергетика
💙В ЛЭТИ получены представления о динамике и потенциале фото- и термоэлектрических солнечных систем и выявлены ключевые факторы для регулирования их эффективности. Это задел на будущее.

Технологии
💙Биологи РАН создают технологию переработки твердых коммунальных отходов, не требующих огромных биореакторов и воды.

💙Биологи ПНИПУ смогли увеличить степень сорбции ионов цинка кормовыми дрожжами в «грязной воде» до 55%. Самым загадочным является одновременный процесс снижения содержания катионов кальция и магния в дрожжевой биомассе. Требуется продолжить работу совместно с биофизиками МГУ имени М. В. Ломоносова.

Методы контроля
💙Химики ЮУрГУ для оценки содержание в воде минимальных концентраций примесей апробировали стандартный мультиметр и предлагают отказаться от хроматографического метода анализа. Для ЦЗЛ это важно.

💙Биофизики Сибири показали возможность моментальной оценки уровня опасности веществ и стрессовых состояний человека с помощью светящихся бактерий. Это практически готовые экспресс-тесты.

💙НИЯУ МИФИ создает первый отечественный, самый скоростной и высокоточный масс-спектрометр для идентификации химических веществ. Вернулись к забытым советским идеям и воссоздали. А в медицинских университетах параллельно с процессом создания тандемного масс-спектрометра начат процесс обучения работы с ним.

Материалы
💙В интересах коммунальных хозяйств Сибири создан композит для полиэтиленовых труб, а в Перми исключен источник затрат при производстве асфальтобетона. Радует, что научные идеи пермских и сибирских ученых уже реализуются и работают на благо регионов.

💙В МГУ студенты получили экзотические монокристаллы для изучения явления сверхпроводимости и люминофорные соединения для детекторов ионизирующих излучений. Задел на будущее.

💙В МИФИ научились настраивать свойства перовскитов, стимулируя их переход из диэлектрического состояния в полупроводниковое. Это начало новой технологии.

Получается, что у нас есть кем и чем гордиться. Будем считать сентябрьские успехи началом нового научного года.

#ОНаукеиТехнологиях

➡️ Подписаться на канал

Техносфера, подъем!

19 Sep, 08:09


⚡️Дайджест Роспатента

Заголовок «Десять лучших патентов» интригует и завлекает. Интересно же, почему Роспатент из всего огромного перечня действующих патентов (около 300 тысяч только в 2023 году) выделил лишь десять новаций, которые якобы соответствуют национальным целям развития страны. Критерии выбора «лучших» патентов Роспатент не озвучил, поэтому каждому представлена возможность самостоятельной оценки, что мы и сделали.

1️⃣ Патент RU2813259C1: субстрат для озеленения крыш домов.
2️⃣ Патент RU2603490C1: двухслойный пластырь для лечения местных воспалительных процессов кожи и мягких тканей.
3️⃣ Патент RU2787587C2: отечественный ДНК-калибратор для прогнозирования состояния ВИЧ-инфицированных пациентов.
4️⃣ Патент на отечественный ортез для дистанционной оценки состояния пациента после травм и ускоренной реабилитации.
5️⃣ Патент RU 2 790402: отечественный имплантат из полиуретанового каркаса, повторяющий геометрию ушной раковины.
6️⃣ Патент 2803314: блок диагностики для элементов солнечной фотоэлектрической электростанции.
7️⃣ Патент RU2796499C1: ультразвуковой расходомер газа.
8️⃣ Патент RU2368417C1: оксидный катализатор селективного окисления аммиака до азота.
9️⃣ Патент RU2819458C1: система навески закрылков крыла самолета.
1️⃣0️⃣ Патент RU2794376C1: технология производства керамики для изготовления режущего инструмента, огнеупоров, оптики и брони.

Надо отметить, что первые пять патентов действительно являются технологическими новациями и важны для сохранения здоровья и поддержания благополучия человека. Особенно уникальной и востребованной является технология изготовления импланта ушной раковины. Браво, Самара!

Отнести же к категории «успешных» следующую пятерку патентов очень трудно. По своей сути все они схожи с рационализаторскими предложениями, так как нацелены на получение локальных эффектов в производственных процессах. Например, очень трудно назвать «успешной» очередную модификацию газового счетчика Омского радиозавода, высокая точность которого (по информации самих же авторов патента) обеспечена ультразвуковым излучателем МЭМС китайского производства. Да и чувствительность сегодня нужна не для счетчика учета расхода газа, а для систем мониторинга и нейтрализации источников его утечки.

⚡️По мнению экспертов нашего портала, придание подобным патентам статуса «успешных», видимо, связано с требованиями Роспатента к участникам конкурса «Успешный патент». Оказывается, что для победы надо правильно оформить и вовремя представить конкурсной комиссии документы.

Очевидно, что при таком формальном подходе основная цель всей деятельности Роспатента никогда не будет достигнута и мы не увидим «положительного опыта по внедрению запатентованных технологий».

#ОНаукеиТехнологиях

➡️ Подписаться на канал

1,794

subscribers

91

photos

3

videos