Спутник ДЗЗ @sputnikdzz Channel on Telegram

Спутник ДЗЗ

@sputnikdzz


Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot

Спутник ДЗЗ (Russian)

Спутник ДЗЗ - это Telegram канал, который предоставляет информацию о дистанционном зондировании Земли, но в доступной и понятной форме. Здесь вы найдете интересные и актуальные материалы о спутниках, снимающих Землю, и как эти данные используются для различных целей. Если вам интересно узнать больше о технологиях, которые помогают изучать нашу планету, то этот канал идеально подойдет для вас.

Кто такие администраторы канала? Команда канала "Спутник ДЗЗ" состоит из экспертов в области дистанционного зондирования и геоинформатики, которые стараются делиться своими знаниями и опытом с широкой аудиторией. Они стараются перевести сложные темы на человеческий язык, чтобы каждый мог понять и оценить важность этой технологии.

Не упустите возможность узнать больше о дистанционном зондировании Земли, подписавшись на канал "Спутник ДЗЗ". Обещаем, что каждая публикация будет интересной и познавательной! Для обратной связи вы также можете воспользоваться ботом канала, обратившись по адресу @sputnikDZZ_bot.

Спутник ДЗЗ

29 Jan, 15:27


​​В ИВП РАН прошел научный семинар, на котором н.с. Андрей Сергеевич Лубков из Института природно-технических систем, лаборатория крупномасштабных взаимодействий систем океан-атмосфера и изменения климата, представил доклад о применении нейронных сетей для долгосрочного прогнозирования осадков и связанных с ними опасных явлений.

Докладчик описал методику прогнозирования гидрометеорологических параметров с использованием нейронных сетей. Метод включает выбор индексов-предикторов, связанных с прогнозируемым параметром, и построение различных конструкций нейронных сетей с разными комбинациями этих индексов.

Разработанная модель демонстрирует способность прогнозировать осадки на срок до шести месяцев. Анализ точности прогноза за период с 2007 по 2024 годы показал, что средний процент попаданий в правильную категорию составляет от 70% до 73%. Важно отметить, что данная модель также успешно предсказывает и события экстремального характера, такие как выпадения значительного количества осадков за несколько дней.

По мнений ученых Института водных проблем, ограничения применимости этой модели в вопросах прогнозирования осадков еще остаются, однако исследуемое направление очень перспективное и заслуживает направленного внимания.

Спутник ДЗЗ

29 Jan, 13:07


Geospatial Data Catalog (https://www.geospatial.community) — каталог ссылок на открытые пространственные данные, созданный Робом Джонсеном (Rob Johnsen).

Для поиска данных регистрация не нужна.

После бесплатной регистрации пользователи смогут:

• добавлять новые наборы данных;
• оставлять отзывы о существующих данных;
• обмениваться мнениями с коллегами в области пространственных данных.

1️⃣ Сейчас в Geospatial Data Catalog 18430 наборов данных. 2️⃣ Пример результатов поиска.

❗️ Каталог работает в режиме бета-тестирования.

#данные

Спутник ДЗЗ

29 Jan, 10:22


GEE-47. Свертка (продолжение)

Чтобы достичь нужного эффекта для обработки изображений используют разные ядра. Так, оператор Лапласа (ee.Kernel.laplacian8) применяется для обнаружения изотропных краев:

// Задаем ядро для детектирования краев изрображения.
var laplacian = ee.Kernel.laplacian8({ normalize: false });

// Применяем свертку.
var edgy = image.convolve(laplacian);
Map.addLayer(edgy,
{bands: ['B5', 'B4', 'B3'], max: 0.5, format: 'png'},
'edges');


📸 Снимок Landsat 8 после свертки с ядром обнаружения краев.

Обратите внимание на спецификатор формата в параметрах визуализации. GEE отправляет тайлы для отображения в Code Editor в формате JPEG. Однако краевые тайлы отправляются в формате PNG, для обработки прозрачности пикселей за границами изображения. Установка формата в PNG позволит сгладить “швы” на границах тайлов.

Существуют анизотропные ядра для обнаружения краев, направление которых можно изменить с помощью функции kernel.rotate(). Низкочастотные ядра включают гауссово ядро и ядра различной формы с равномерными весами.

Чтобы создать ядро с произвольно заданными весами и формой, используйте ee.Kernel.fixed(). Следующий код создает ядро 9x9 из единиц с нулем в центре:

// Список весов для ядра 9x9.
var row = [1, 1, 1, 1, 1, 1, 1, 1, 1];
// В центре ядра - 0.
var centerRow = [1, 1, 1, 1, 0, 1, 1, 1, 1];
// Создаем список списков - матрицу ядра 9x9.
var rows = [row, row, row, row, centerRow, row, row, row, row];
// Создаем ядро по готовым весам.
var kernel = ee.Kernel.fixed(9, 9, rows, -4, -4, false);
print(kernel);


#GEE

Спутник ДЗЗ

29 Jan, 10:12


GEE-47. Свертка (пространственная фильтрация)

Линейная свертка изображений выполняется функцией image.convolve(). Единственным аргументом convolve является ядро свертки ee.Kernel, которое задается 1) формой и 2) коэффициентами (весами).

Ядра применяются по отдельности к каждому слою изображения.

Применим сглаживающее (низкочастотное) ядро 15x15 для удаления высокочастотной информации со снимка Landsat 8:

// Загружаем снимок.
var image = ee.Image('LANDSAT/LC08/C01/T1_TOA/LC08_044034_20140318');
Map.setCenter(-121.9785, 37.8694, 11);
Map.addLayer(image, {bands: ['B5', 'B4', 'B3'], max: 0.5}, 'input image');

// Задаем ядро (фильтр) - boxcar.
var boxcar = ee.Kernel.square({
radius: 7, units: 'pixels', normalize: true
});

// Выполняем свертку (фильтрацию).
var smooth = image.convolve(boxcar);
Map.addLayer(smooth, {bands: ['B5', 'B4', 'B3'], max: 0.5}, 'smoothed');


📸 Снимок Landsat 8 (ложноцветовой композит) после свертки со сглаживающим ядром. Бухта Сан-Франциско, шт. Калифорния (США).

Аргументы ядра определяют его размер и коэффициенты. В частности, если параметр units установлен в pixels, то radius задает количество пикселей от центра, которое будет покрыто ядром. Если параметр normalize имеет значение true, то коэффициенты ядра будут равны единице. Если задан параметр magnitude, то коэффициенты ядра будут умножены на значение этого параметра (если при этом normalize равен true, то коэффициенты ядра будут равны magnitude). Если в каком-либо из коэффициентов ядра есть отрицательное значение, то установка normalize в true приведет к тому, что коэффициенты будут равны нулю.

#GEE

Спутник ДЗЗ

29 Jan, 10:06


Свертка или пространственная фильтрация изображений в GEE

Линейная свертка изображения 📸 — это обработка изображения с помощью скользящей маски, которая представляет собой заданную квадратную матрицу. После свертки, каждый пиксель изображения представляет собой линейную комбинацию значений маски и пикселей исходного изображения, покрытых маской. Матрицу-маску называют также фильтром, ядром, окном или шаблоном. Элементы маски принято называть коэффициентами. Операцию свертки называют также пространственной фильтрацией изображения.

“Пространственная фильтрация” и “фильтр”, на наш взгляд, самые удачные термины. Но в Google Eearth Engine вместо них приняты “свертка” и “ядро”. Термины эти используются в названиях функций GEE, так что вместо сглаживающего фильтра будет сглаживающее ядро, а вместо фильтрации — свертка.

Теорию можно найти в 📖 Гонсалес Р., Вудс Р. Цифровая обработка изображений (любое издание, раздел 3.4. “Основы пространственной фильтрации”).

А мы продолжим так как будто всем все известно.

#GEE

Спутник ДЗЗ

29 Jan, 07:41


Беларусь планирует запустить наноспутник для наблюдения за ионосферой Земли в 2025 году

В рамках научно-технической программы Союзного государства "Комплекс-СГ" идет работа по созданию трех спутников: малого спутника (массой до 250 кг), предназначенного для высокодетального наблюдения Земли, и двух наноспутников, которые будут решать задачи мониторинга околоземного пространства и мониторинга ионосферы.

Последний наноспутник изготавливают институты Национальной академии наук (НАН) Беларуси. Как сообщил академик-секретарь отделения физики, математики и информатики НАН Беларуси Александр Шумилин: "У нас готов белорусский спутник, проходит последние испытания, планируем запустить в этом году, чтобы проводить зондирование ионосферы, а соответственно и предупреждать на перспективу о влиянии солнечных вспышек, магнитных бурь на энергосистему, на связь".

Вероятно, для наблюдения за параметрами ионосферы, будет использоваться метод ГНСС-радиозатменного зондирования. Подобные работы велись https://ssau.ru/news/18061-uchenye-rossii-i-belarusi-razrabotayut-sposoby-izucheniya-ionosfery-zemli-s-pomoshchyu-signalov-gps-i-glonass совместно учеными Самарского университета и Объединенного института проблем информатики (ОИПИ) НАН Беларуси.

#ионосфера #ro #РБ

Спутник ДЗЗ

28 Jan, 13:05


Солнечный трос для МКС

Исследователи из Университета Падуи в работе Bare Photovoltaic Tether characteristics for ISS reboost предложили использовать для поддержания орбиты Международной космической станции (МКС) трос длиной 15 километров. По всей длине троса в него будут внедрены солнечные элементы. По расчетам ученых, такой трос сможет удерживать МКС на орбите без использования традиционного топлива.

Магнитное поле Земли взаимодействует с электрическим полем в проводнике (тросе), создавая движущую силу, которая помогает станции не падать на Землю.

Проекты электродинамических тросовых систем существуют уже несколько десятилетий. Изюминка нынешней работы — в использовании солнечных элементов. Концепция названа авторами "bare photovoltaic tether” — голый фотоэлектрический трос.

Эффективность солнечных элементов, по расчетам ученых, составит около 4,23%, что обеспечит генерацию 8,3 кВт энергии — достаточно для компенсации падения орбиты МКС на пару километра в месяц.

📊 Схема работы голого фотоэлектрического троса.

Падуя — родина Джузеппе Коломбо, одного из авторов концепции космических тросовых систем. В его честь назван европейский зонд BepiColombo. Часть коллектива авторов работает в Centre of Studies and Activities for Space (CISAS) "G. Colombo".

Спутник ДЗЗ

28 Jan, 09:04


Королёвские чтения – 2025

С 28 по 31 января 2025 года в Московском государственном техническом университете имени Н.Э. Баумана состоятся ХLIX Академические чтения по космонавтике, посвященные памяти академика С. П. Королёва и других выдающихся отечественных ученых – пионеров освоения космического пространства.

Учредители: Российская академия наук, Госкорпорация “Роскосмос” и МГТУ им. Н.Э. Баумана.

🔗 Сайт Чтений: https://korolev.bmstu.ru

В рамках Чтений на 22 тематических секциях будут представлены доклады специалистов ведущих предприятий-разработчиков ракетно-космической техники, научных организаций и ведущих высших учебных заведений о современных достижениях космонавтики, результатах фундаментальных исследований и разработок исторически сложившихся научных и конструкторских школ, об актуальных задачах развития отрасли и исследования космического пространства.

📚 Программа чтений

#конференции

Спутник ДЗЗ

28 Jan, 07:02


Трехмерные модели поверхности с высоким пространственным разрешением, построенные по радарным данным

Анимация ⬆️ построена по данным радарной группировки компании Umbra. Несколько спутников, сменяя друг друга, снимали один и тот же участок местности. Комбинируя дополнительные ракурсы и изображения высокого разрешения, полученные в прожекторном режиме съемки, можно получить субметровую цифровую модель местности за несколько часов.

Автор поста в X, @solarecho3, замечает, что “Подобные данные от Array Labs и Umbra должны быть в руках каждого оператора SOCOM для каждой миссии”. SOCOM или USSOCOM — это командование сил специальных операций Вооруженных сил США.

27 января, компании Array Labs, Umbra и Raytheon объявили о том, что будут совместно предлагать новый продукт под названием Site3D, сочетающий технологию радарной съемки из космоса со специализированными алгоритмами картографирования для создания детальных трехмерных моделей поверхности Земли.

Компания Array Labs из Пало-Альто (шт. Калифорния, США) разрабатывает кластеры малых радарных спутников, предназначенных для одновременной съемки одного и того же места с нескольких ракурсов. Цель — создание оперативных трехмерных карт Земли в любую погоду и с высоким пространственным разрешением.

Raytheon и Umbra “помогут нам обучить клиентов, быстрее вывести на рынок продукты с 3D-данными и запустить наши собственные кластеры спутниковой съемки”, — сказал генеральный директор Array Labs Эндрю Петерсон (Andrew Peterson).

🔗 Большая популярная статья, посвященная технологиям Array Labs: Array Labs: 3D Mapping Earth from Space.

#война #SAR #DEM #США

Спутник ДЗЗ

27 Jan, 14:22


Взгляд с орбиты — дрейф крупнейшего в мире айсберга А23а, за движением которого сейчас наблюдает весь мир👀

🛰️
Спутник группировки SITRO-AIS передал снимок айсберга, сделанный с обзорной камеры аппарата, движущегося в сторону острова Южная Георгия в Южном океане.

По последним данным его площадь составляет целых 3672 км2!

🌍 Высота орбиты КА SITRO-AIS #31 — 401 км
📆 Дата съёмки — 23.01.2025
📌 Координаты — западная долгота 37°49'22"
южная широта 56°46'22"

Спутник ДЗЗ

27 Jan, 13:06


Карты лугов мира 2000–2022 гг.

Лаборатория Land & Carbon Lab создала исследовательский консорциум Global Pasture Watch для подготовки данных, которые помогут в мониторинге лугов и пастбищ.

Уже доступны 📸 карты лугов мира с 2000 г. по 2022 г. — 🗺 Annual 30-m maps of global grassland class and extent (2000–2022). В будущем планируется ежегодно пополнять эти данные.

🌍 Данные на Google Earth Engine
🖥 Исходный код для создания карт на GitHub
📖 Статья с описанием методики

Land & Carbon Lab собирается создать еще три набора данных:

GLD-1km: Глобальные карты плотности поголовья скота c разрешением 1 км
GSVH-30m: Глобальные карты высоты короткой растительности (разрешение 30 м)
GGPP-30m: Глобальные карты валовой первичной продуктивности (30 м).

#данные #луга #растительность #GEE

Спутник ДЗЗ

27 Jan, 10:33


Tomorrow.io представила платформу для прогноза осадков

Компания Tomorrow.io представила на ежегодном собрании Американского метеорологического общества свою платформу NextGen, предназначенную для прогнозирования осадков в глобальном масштабе.

NextGen получает данные со спутников Tomorrow.io и предоставляет глобальные прогнозы осадков с разрешением 2,5 км, обновляемые каждые пять минут.

Tomorrow.io управляет группировкой из шести спутников: двух радарных спутников Ka-диапазона, запущенных в 2023 году, и четырех спутников с микроволновыми зондами, запущенных в 2024 году. Следующий запуск спутников запланирован на 2025 год.

Министерство обороны США заключило с Tomorrow.io контракты на сумму более 20 млн долларов, а NOAA проводит оценку метеоданных Tomorrow.io в рамках контракта на 2,3 млн долларов.

📸 Иллюстрация использования радарных данных в платформе NextGen компании Tomorrow.io.

Источник

#США #погода

Спутник ДЗЗ

27 Jan, 08:03


Rocket Lab запустит восемь спутников OroraTech

Rocket Lab заключила контракт на запуск восьми спутников тепловой инфракрасной съемки, принадлежащих компании OroraTech. В социальных сетях Rocket Lab сообщила, что до запуска “осталось всего несколько недель”.

OroraTech (г. Мюнхен, Германия) разрабатывает группировку спутников для обнаружения и мониторинга лесных пожаров. Компания запустила свой третий спутник, FOREST-3, в составе миссии SpaceX Transporter-12 14 января нынешнего года.

В октябре 2024 года OroraTech привлекла 26 млн долларов инвестиций и заявила, что после запуска FOREST-3 она в течение года запустит два набора из восьми спутников каждый, но не раскрыла планы по запуску. В конечном счете, OroraTech планирует развернуть на орбите группировку из 100 спутников.

📸 Художественное изображение спутника OroraTech FOREST-2 на орбите

Источник

#LST #германия

Спутник ДЗЗ

26 Jan, 14:06


Пыльные бури на юго-востоке Ирана

На снимке Terra MODIS от 22 января 2025 года видно как ветер несет пыль из засушливых районов юго-восточного Ирана через Оманский залив на Аравийский полуостров.

Судя по снимку, основным источником пыли является дно пересыхающего озера Хамун-е Джазмуриан, расположенного в северной части сцены и на момент съемки полностью высохшего. Часть пыли образуется в прибрежных районах.

Осадков в Джазмурийском бассейне выпадает мало, в среднем менее 10 сантиметров в год. Во влажные периоды часть бассейна покрывается озерами, болотами и растительностью.

#атмосфера #снимки

Спутник ДЗЗ

26 Jan, 11:03


LatConnect 60 интегрирует данные о влажности почвы от Spire в свою веб-платформу

Австралийская компания LatConnect 60, занимающаяся созданием спутников и поставкой спутниковых данных, будет предоставлять клиентам данные о влажности почвы от американской компании Spire, полученные с помощь ГНСС-рефлектометрии — Spire Soil Moisture Insights.

Продукт Soil Moisture Insights — это ежедневные глобальные данные о влажности почвы с высоким пространственным разрешением (6 км или 500 м). Благодаря ГНСС-рефлектометрии, измерения удается выполнить даже в условиях сильной облачности и густого растительного покрова.

📸 Влажность почвы в Новом Южном Уэльсе (Австралия) с пространственным разрешением 6 км, 500 м и 100 м [источник].

Данные о влажности почвы весьма востребованы в сельском хозяйстве. Как правило, они ограничены приповерхностным слоем почвы и имеют разрешение порядка десяти километров. Например, общедоступные ежедневные данные спутника SMAP показывают влажность поверхностного слоя почвы толщиной 5 см с пространственным разрешением 9 км (L2_SM_AP). Здесь же даже самые грубые данные оказываются тоньше данных SMAP, причем система наблюдений реализована на малых спутниках. Напомним также, что компания Spire, использует свои данные в военных целях:

"Компания Spire Global, занимающаяся разработкой наноспутников, не ставила перед собой задачу стать поставщиком средств радиоэлектронной разведки (SIGINT). Но после случайного обнаружения того, что ее антенны, предназначенные для прогнозирования погоды, также улавливают сигналы, используемые для глушения GPS, поворот к новому направлению стал вполне логичным <…>" [источник]

#GNSSR #австралия #США #почва

Спутник ДЗЗ

26 Jan, 08:05


XCUBE-1 — первый спутник гиперспектральной группировки Xplore

Компания Xplore (шт. Вашингтон, США) подтвердила работоспособность своего спутника XCUBE-1, запущенного в составе миссии Transporter-12. Это первый аппарат из запланированной группировки 12-ти гиперспектральных спутников.

XCUBE-1 имеет форм-фактор CubeSat 6U и будет поставлять данные с пространственным разрешением 4,2 метра на пиксель. Следующие спутники группировки будут оснащены несколькими датчиками.

Компания Xplore, основанная в 2017 году, является одной из шести компаний, поставляющих гиперспектральные данные Национальному разведывательному управлению США (NRO). Помимо традиционных для таких данных точного земледелия и управления лесным хозяйством, компания указывает в списке приложений данных обеспечение осведомленности об обстановке в космическом пространстве (SSA).

📸 Спутник Xplore XCUBE-1 (справа) незадолго отделения от ракеты-носителя SpaceX Falcon 9

#гиперспектр #SSA #США

Спутник ДЗЗ

25 Jan, 13:04


NASA выбрало 15 технологий для перспективных исследований в рамках первой фазы программы NASA Innovative Advanced Concepts (NIAC). Общая сумма грантов на 2025 год составляет 2,625 млн. долларов и направлена на оценку технологий, которые могут помочь в будущих аэрокосмических миссиях.

NIAC финансирует исследование концепций технологий, находящихся на ранних стадиях развития. В первой фазе работ обосновывается принципиальная работоспособность предлагаемой концепции. В свое время, результаты подобной работы показали наличие материалов, пригодных для строительства “космического лифта”.

Список технологий включает в себя концепции термоядерной двигательной установки для космических аппаратов, надувного “абажура”, который вместе с с космическим телескопом можно использовать для наблюдения экзопланет размером с Землю, миниатюрных роботов, которые были бы способны плавать в океанах других миров, а также (канал все-таки про дистанционное зондирование) — 📸 буксируемого аппарата, содержащего камеру и приборы для отбора проб, предназначенного для спуска в атмосферу Венеры.

📸 Художественное изображение венерианского зонда TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling.

#США

Спутник ДЗЗ

25 Jan, 10:05


Итальянское космическое агентство и Thales Alenia Space подписали контракт на реализацию миссии NASA по наблюдению Земли

Итальянское космическое агентство (ASI) и компания Thales Alenia Space подписали контракт на реализацию миссии NASA по наблюдению Земли — Surface Biology and Geology - Thermal Infrared (SBG-TIR).

Аппарат SBG-TIR будет оснащен тепловым инфракрасным (ИК) радиометром и мультиспектральной камерой, работающей в видимом и ближнем ИК диапазоне. Это позволит исследовать наземные и морские экосистемы, проводить мониторинг водных ресурсов и явлений, связанных с высокими температурами, таких как лесные пожары и извержения вулканов.

Thales Alenia Space отвечает за интеграцию спутника SBG-TIR, адаптацию своей платформы PRIMA-S для размещения радиометра и проведение необходимых испытаний.

Платформа PRIMA-S создана на основе HE-R1000 (High Efficiency Radar) и является частью линейки продуктов Thales Alenia Space по созданию радарных и оптических спутников дистанционного зондирования.

Облик теплового ИК радиометра сформирован специалистами NASA Jet Propulsion Laboratory (JPL), ASI, Istituto Nazionale Geofisica e Volcanologia (INGV), и Istituto Nazionale Astrofisica (INAF). Это восьмиканальный радиометр, работающий в диапазонах средневолнового и длинноволнового ИК излучения (до 12 мкм). При высоте полета 665 км прибор должен обеспечивать пространственное разрешение <60 м в надире с шириной полосы обзора 935 км и временем повторного посещения 2–3 суток. Изготовление прибора взяло на себя NASA

Дополнит радиометр двухканальная камера VIREO, работающая в видимом и ближнем ИК диапазонах с пространственным разрешением <30 м в надире и шириной полосы обзора 935 км. Разработчиками камеры являются компания Leonardo (материнская компани Thales Alenia) совместно с ASI.

Разработка проекта SBG-TIR начата по рекомендации десятилетнего обзора Национальной академии наук о Земле 2017 года (2017 National Academies decadal survey for Earth science). Работы над проектом стартовали весной 2021 года. Запустить спутник планируют к концу нынешнего десятилетия.

#LST #оптика #италия #США

Спутник ДЗЗ

25 Jan, 08:51


Поздравляем с Днём Студента!

Спутник ДЗЗ

18 Jan, 14:34


Конкурс проектов по космонавтике "ЗВЁЗДНАЯ ЭСТАФЕТА-2025"

Звёздная эстафета - это космический конкурс, который проходит в России уже с 2003 года под эгидой Центра подготовки космонавтов им. Ю.А. Гагарина и даёт возможность прикоснуться к космосу всем детям от 6 до 18 лет!

АНО "Центр инженерно-космического и естественно-научного образования" и Детский технопарк «Кванториум» г. Королёв начинают приём заявок на Конкурс проектов по космонавтике "Звёздная эстафета-2025".
Организовывается при поддержке Центра подготовки космонавтов им. Ю.А. Гагарина, Фонда "Рубежи науки" и компании "Образование Будущего".

Заявки принимаются до 15 марта 2025 года включительно.

Кто может принимать участие?
Индивидуальные участники и команды (до 3 человек) из всех регионов Российской Федерации:

- младшая возрастная категория: 6-9 лет;
- средняя возрастная категория: 10-13 лет;
- старшая возрастная категория: 14-18 лет.

Секции конкурса, по которым принимаются проекты:

1. Научно-техническая
2. Астрономическая секция
3. Художественная секция
4. Литературно-журналистская секция
5. Медико-биологическая секция

Регистрация с загрузкой заполненного паспорта проекта и аннотации к проекту до 15 марта доступна по ссылке.

Ресурсы:
- Официальный сайт конкурса c подробным описанием тем секций Звёздной эстафеты: https://spaceeducation.info/ru/star-relay-2025/
- Телеграм-канал конкурса, в котором можно задавать вопросы под постами сезона 2025 года: https://t.me/zvezdestafeta


Очный ФИНАЛ будет проходить с 14 апреля по 17 апреля 2025 года (включительно) в форме публичной защиты конкурсных работ/проектов в очном формате по адресу:
- Московская область, г. Королев, ул. Пионерская 34, Центр дополнительного образования «Детский технопарк «Кванториум»
- г. Москва, Дворец Пионеров на Воробьёвых горах


Программа финала также включает в себя посещение экскурсий на предприятия ГК "Роскосмос", встречи с космонавтами и специалистами космической отрасли.

Главные партнёры конкурса:
- Центр подготовки космонавтов им. Ю.А. Гагарина
- Фонд «Рубежи науки»
- ГК «Роскосмос»
- Инженерно-методическая компания «Образование Будущего»
- ФГБОУ ДО «Федеральный центр дополнительного образования и организации отдыха и оздоровления детей»
- «Кружковое движение Национальной технологической инициативы НТИ»
- Ракетно- космическая корпорация «Энергия» им. С.П. Королёва
- ГБОУ «Дворец пионеров «Воробьёвы горы»

Дополнительная информация в Положении конкурса

Все вопросы можно задавать в комментариях телеграм-канала Конкурса "Звёздная эстафета".

Не бойтесь участвовать, даже если это ваш первый шаг в космонавтику!

Спутник ДЗЗ

18 Jan, 12:52


Запущен пакистанский и два китайских спутника ДЗЗ

17 января 2025 года в 04:07 всемирного времени с космодрома Цзюцюань выполнен пуск ракеты-носителя “Чанчжэн-2D” (Y101) с тремя спутниками ДЗЗ: пакистанским PRSC-EO1, китайскими Tianlu-1 (天路一号) и Lantan-1 (蓝碳一号). Космические аппараты успешно выведены на околоземную орбиту.

Контракт о запуске пакистанской спутниковой группировки дистанционного зондирования Земли (ДЗЗ) между китайской Great Wall Company, дочерней компанией корпорации CAST, и Комиссией по космическим и чрезвычайным исследованиям Пакистана (SUPARCO) был подписан в 2022 году.

Пакистанский 🛰 спутник PRSC-EO1, разработанный SUPARCO, является первым спутником запланированной группировки ДЗЗ, которая должна состоять из трех аппаратов оптико-электронного наблюдения Земли. Спутник оснащен оптической камерой высокого пространственного разрешения.

🛰 Tianlu-1, разработанный компанией Galaxy Aerospace Technology (Anhui) для Центра пограничных инновационных технологий Цзянхуай (Jianghuai Frontier Technology Collaborative Innovation Center), — это спутник лимбового зондирования атмосферы. Сообщается, что аппаратура спутника обладает высоким вертикальным разрешением,

🛰 Lantan-1 (蓝碳一号), иначе называемый Hangdian Zhisuan-1 (杭电智算一号) или Blue Carbon-1 — первый спутник мониторинга морских ресурсов, запущенный в интересах провинции Чжэцзян. Спутниковую платформу разработала и изготовила компания Space-Time Daoyu Technology (Geely's Geespace). Полезная нагрузка была разработана Ханчжоуским институтом перспективных исследований Китайского университета науки и техники (HIAS-UCAS).

📸 Пакистанский спутник PRSC-EO1 (источник)

#пакистан #китай #оптика #атмосфера #вода

Спутник ДЗЗ

18 Jan, 10:35


Опубликованы презентации докладов VIII Всероссийского объединённого метеорологического и гидрологического съезда

🔗 Презентации доступны на сайте.

Напомним названия секций:

🔹 Метеорологический съезд

* МС-1. Состояние и стратегические направления развития государственной метеорологической наблюдательной сети
* МС-2. Метеорологические исследования, прогнозирование погоды и климата
* МС-3. Климатическое обслуживание и адаптация, включая социально-экономические аспекты
* МС-4. Мониторинг и исследования состава и загрязнения атмосферы
* МС-5. Геофизические исследования атмосферы и ионосферы

🔹 Гидрологический съезд

* ГС-1. Опасные гидрологические явления: оценка, прогнозирование, снижение рисков
* ГС-2. Состояние и развитие системы гидрологического мониторинга
* ГС-3. Проблемы качества вод и охраны водных объектов
* ГС-4. Водные ресурсы, водный баланс: расчеты и моделирование. Гидрологические последствия климатических изменений
* ГС-5. Управление водными ресурсами и региональные водохозяйственные проблемы
* ГС-6. Исследования русловых, эрозионных и устьевых процессов

#погода #климат #вода #атмосфера #ионосфера

Спутник ДЗЗ

18 Jan, 07:48


110 лет назад, 18 января 1915 года родился Борис Викторович Раушенбах — один из основоположников советской космонавтики выполнивший пионерные работы по управлению ориентацией космических аппаратов. Под его руководством была создана первая автономная система ориентации космических аппаратов, впоследствии получившая название "Чайка". В 1959 году автоматическая межпланетная станция "Луна-3", оснащенная этой системой, облетела Луну и сделала первые фотографии ее обратной стороны.

Под руководством Раушенбаха были разработаны системы ориентации и коррекции полета автоматических межпланетных станций "Марс" (первый запуск в 1960 году), "Венера" (1961) и спутников связи "Молния" (1964), "Горизонт" (1978), автоматического и ручного управления кораблями "Восток" (1961), "Восход" (1964), "Союз" (1967), а также орбитальными станциями "Салют" (1971).

Источник

#история

Спутник ДЗЗ

17 Jan, 13:03


Последствия пожара Итон

📸 Снимок, сделанный 11 января 2025 года прибором AVIRIS-3 (Airborne Visible/Infrared Imaging Spectrometer-3) с борта самолета B200 над округом Лос-Анджелес, показывает районы, пострадавшие от лесного пожара Итон (Eaton) в Альтадине (Altadena), примерно в 23 км от делового центра Лос-Анджелеса.

На ложноцветном изображении обугленные деревья и здания выглядят темно-коричневыми, тогда как сгоревшие участки дикой природы, особенно в Национальном лесу Анджелеса (Angeles National Forest), имеют оранжевый оттенок.

Пожар Итон вспыхнул на холмах Итон-Каньона (Eaton Canyon) вечером 7 января. К 10:30 утра следующего дня пожар охватил более 40 кв. км. На момент съемки 11 января площадь пожара достигла 57 кв. км.

Гиперспектральный оптический сенсор AVIRIS-3 собирает данные в 286 диапазонах электромагнитного спектра, начиная от фиолетового (длина волны 380 нм) и заканчивая коротковолновым инфракрасным излучением (2500 нм).

Слева на снимке отмечена Лаборатория реактивного движения NASA (Jet Propulsion Laboratory, JPL). Как видно на снимке, пожар остался на значительном расстоянии от JPL. Пламя угрожало знаменитой обсерватории Маунт-Вилсон (Mount Wilson), но 9 января было остановлено пожарными на самом краю территории обсерватории.

#пожары #снимки

Спутник ДЗЗ

17 Jan, 10:33


Цветение фитопланктона вдоль Патагонского шельфа

📸 Прибор OCI (Ocean Color Instrument) спутника NASA PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) получил этот снимок цветения фитопланктона вокруг Фолклендских (Мальвинских) островов 28 декабря 2024 года.

Сезон цветения фитопланктона вдоль Патагонского шельфа длится уже несколько месяцев. Пыль, переносимая ветром с суши, богатые железом течения и восходящие потоки с глубин обеспечивают фитопланктон обильным питанием, а тот, в свою очередь, поддерживает водное биоразнообразие и продуктивное рыболовство.

Распределение цветов на снимке свидетельствует о сложных течениях в поверхностных водах океана. Планктон не может плыть против течения, поэтому различные цвета указывают на водные массы, содержащие разные уровни элементов, необходимых для роста различных видов фитопланктона.

#снимки #вода

Спутник ДЗЗ

17 Jan, 08:03


Автоматический расчет дрейфа и сжатия морского ледяного покрова по данным спутников “Метеор-М” №2

📖 Алексанина М.Г., Дьяков С.Е., Карнацкий А.Ю. Автоматический расчёт дрейфа и сжатия ледяного покрова моря в акватории Печорского моря по метеорологическим спутниковым данным

В акватории Печорского моря, где проходит транзит грузов по Северному морскому пути, регулярно складываются тяжелые ледовые условия, проявляющиеся в сжатиях ледяного покрова. Ледовые сжатия, возникающие из-за неравномерности дрейфа льда, относятся к опасным для судоходства гидрометеорологическим явлениям.

В Спутниковом центре ИАПУ ДВО РАН используется оригинальный метод автоматического расчета скоростей перемещений ледовых полей. Этот метод применяется для расчета характеристик сжатия льда.

Ранее в расчетах использовались данные спектрорадиометра MODIS спутников NASA Terra и Aqua. В данной работе характеристики сжатия льда определяются по данным прибора КМСС российских метеоспутников “Метеор-М” №2.

По сравнению с данными MODIS, данные КМСС в задаче мониторинга ледовой обстановки вдоль Северного морского пути имеют ряд преимуществ:

1️⃣ пространственное разрешение 60 м на пиксель (против 250 м у MODIS).
2️⃣ двойное покрытие одной и той же акватории с интервалом в 100 минут (1 час 40 минут — интервал времени между съемками на смежных витках).

Это позволяет рассчитывать скорости движения льдов с точностью 1 см/сек. Интервал времени всего в 1 час 40 минут дает возможность рассчитать (почти) мгновенную скорость деформации (сжатия/разрежения) ледового поля моря. Скорость деформации ледового поля моря зависит от приливных течений, меняющих направление обычно с интервалом около 6 часов.

Разработанный подход к расчету дрейфа и сжатия ледяного покрова моря может быть применен и к температурным картам, что актуально в период полярных ночей.

Перспективным источником информации могут стать китайские метеорологические спутники серии FY-3, имеющие инфракрасные спектральные каналы с пространственным разрешением 250 м. Разрабатываемая технология расчета дрейфа ледяного покрова моря в настоящее время встраивается в Государственную информационную систему оперативной поставки данных дистанционного зондирования Земли (ГИС ОПД ДЗЗ) Роскосмоса.

📚 Презентация
📹 Видеозапись доклада

📊 Слайды “Расчет скоростей дрейфа и сжатия морского льда по данным КМСС…” и “Проблемы использования технологий”

#лед

Спутник ДЗЗ

16 Jan, 13:03


Новая концепция развития ВВС и Космических сил США изложена в докладе “The Department of the Air Force in 2050”

В последние недели своего пребывания на посту министр ВВС США Фрэнк Кендалл (Frank Kendall) обратился к Конгрессу с предупреждением: Соединенные Штаты рискуют отстать от Китая в военной космической гонке, если не проведут коренную трансформацию своего космического потенциала.

В докладе The Department of the Air Force in 2050 представлена амбициозная концепция развития ВВС и Космических сил США. Она предполагает увеличение численности персонала, вложения в развитие инструментов искусственного интеллекта, автономных систем и модернизацию систем наблюдения из космоса.

Кендалл подчеркнул, что будущие конфликты будут происходить на “машинной, а не на человеческой скорости”, что потребует широкой интеграции искусственного интеллекта для анализа данных в режиме реального времени и получения разведывательной информации.

Доклад призывает к “трансформационным инвестициям” в нескольких критических областях: системы предупреждения о ракетном нападении и слежения, обнаружение ядерных взрывов, возможности целеуказания в реальном времени, безопасная связь и управление боем, защита от космических систем противника.

Кендалл подчеркнул настоятельную необходимость дальнейшего развития: “Нам придется что-то делать, чтобы противостоять милитаризации космоса, которую начал Китай, в основном для того, чтобы нацелиться на наши объединенные силы и в значительной степени лишить нас космического потенциала”.

Помимо военного потенциала, в докладе подчеркивается необходимость более глубокого партнерства с частным сектором для использования коммерческих инноваций и инноваций двойного назначения.

Источник

#война #США

Спутник ДЗЗ

16 Jan, 10:32


В Новосибирске создали модификацию двигательной установки для малых спутников

Специалисты новосибирской компании "Современный инжиниринг и автоматика" (СИА) создали модификацию водной электротермической двигательной установки для малых спутников.

Ранее компания разработала миниатюрный двигатель малой тяги “ПАРом". "Изначально, мы делали модификацию для наноспутников, так называемых CubeSat. Но сейчас тренд меняется до спутников [массой] 20–50 кг, а там уже нужен больше запас воды для увеличения маневренности спутника", — сообщил гендиректор компании Роман Захаров.

Сейчас на орбите работают шесть двигателей, выпущенных компанией. "Мы создаем самые компактные в мире водные электротермические двигатели малой тяги для спутников до 100 кг. <…> Потенциал нашего производства через два года — 30–60 шт/год. Цель — производить до 100 двигателей в год", — подчеркнул Захаров.

Разработчики рассчитывают, что новая модификация двигателей найдет применение в группировках спутников Роскосмоса, таких как "Грифон" и "Марафон".

Источник

#россия

Спутник ДЗЗ

16 Jan, 08:02


55 лет назад, 16 января 1970 года на орбиту запущен советский спутник “Космос-320” — второй спутник серии ДС-МО (Днепропетровский спутник—Оптический) или “Космическая стрела“. Спутники ДС-МО впервые в мире были оборудованы системой аэродинамической ориентации и аэрогироскопической стабилизации.

Космический аппарат предназначался для:

* проведения исследований пространственно-временных вариаций радиационного баланса Земли и ее атмосферы в видимой, ближней ультрафиолетовой и инфракрасной областях спектра;
* получения изображений облачного покрова Земли и подстилающей поверхности с целью объективной параметризации синоптических состояний атмосферы и типизации облачных систем;
* определения температуры подстилающей поверхности Земли;
* определения верхней границы облаков;
* получения пространственно-временного распределения масс озона и водяного пара в атмосфере;
* испытания работы аэрогироскопической системы ориентации.

Спутники разрабатывались и изготавливались днепропетровским КБ “Южное”. Постановщиком экспериментов являлся Институт физики Земли АН СССР.

У спутника ДС-МО № 1 (“Космос-149”) сразу после запуска (21 марта 1967 г.) начались проблемы со стабилизацией, из-за чего аппарат перешёл во вращение вокруг продольной оси, что ограничило качество и количество поступающих с него данных.

Полёт ДС-МО № 2 (“Космос-320”) стал полностью успешным. Спутник массой 321 кг, запущенный 16 января 1970 года на орбиту с высотой апогея 297 км, проработал до 10 февраля 1970 года (плановое время существования на орбите: 10 суток) и успешно выполнил все поставленные перед ним задачи

Впервые приём телеметрической информации со спутников ДС-МО, в частности, телевизионного изображения Земли, передаваемой со спутника аппаратурой “Топаз-25-М”, осуществлялся непосредственно в КБ “Южное”.

📸 Макет спутника ДС-МО

Источник: Конюхов С. Н. Ракеты и космические аппараты конструкторского бюро Южное. Днепропетровск: Государственное конструкторское бюро "Южное" имени М. К. Янгеля, 2000.

#история #атмосфера

Спутник ДЗЗ

15 Jan, 11:07


Спутники ДЗЗ миссии SpaceX Transporter-12 – окончание

AAC Clyde Space запустила CubeSat 4U 🛰 Sedna-2, с приемником АИС для морского мониторинга, а португальская компания LusoSpace запустила CubeSat 4U 🛰 PoSat-2 — также с АИС для морского мониторинга.

Миссия ANSER испанской компании INTA и ESA по мониторингу качества воды и изменения климата, которая стартовала на ракете Vega в октябре 2023 года, должна была состоять из тройки спутников CubeSat 3U с одним ведущим и двумя ведомыми аппаратами. Однако ведущий спутник вывести тогда не удалось. В составе Transporter-12 был выведен на орбиту новый ведущий — аппарат 🛰 Leader-S. Теперь перед разработчиками группировки стоит задача сближения на орбите пары ведомых с новым ведущим спутником.

Digantara и OrbAstro запустили 🛰 SCOT — CubeSat 6U, на котором установлен датчик Digantara Space Climate and Object Tracker для мониторинга космического мусора и космической погоды.

Компания Care Weather запустила 🛰 Fledgling Veery Barb — CubeSat 1U, который должен продемонстрировать работу миниатюрного радара.

#испания #португалия #микроволны

Спутник ДЗЗ

15 Jan, 10:56


Спутники ДЗЗ миссии SpaceX Transporter-12 – продолжение

Кроме MBZ-SAT, ОАЭ запустили студенческие спутники 🛰 HCT-Sat 1 и 🛰 AlAinSat-1 с полезными нагрузками для наблюдения Земли.

Итальянская компания D-Orbit представила пару своих аппаратов ION OTV, названных Amazing Antonius и Eminent Emmanuel. Они будут нести множество полезных нагрузок и спутников клиентов для последующего развертывания.

Компания Impulse Space отправила на орбиту модернизированную версию своего транспортного контейнера Mira массой 294 кг. На Mira установлено несколько систем камер для наблюдения за космической обстановкой от Starfish Space, HEO Robotics и Impulse.

Южнокорейский спутник 🛰 BlueBon, CubeSat 6U-XL компании TelePIX, имеет камеру среднего разрешения и искусственный интеллект для обработки снимков на борту. Спутник находится на борту транспортного контейнера Impulse OTV и будет развернут примерно через неделю после запуска.

Spire запустила 6 космических аппаратов 🛰 LEMUR, три из которых, LEMUR 2 (CubeSat 3U), оснащены приборами для радиозатменных измерений и приемниками АИС.

Норвегия запустила 35-килограммовый спутник 🛰 NORSAT-4. Как и предыдущие аппараты NORSAT, он оснащен приемником системы слежения за судами АИС, а также устройством формирования изображений в условиях недостаточной освещенности для обнаружения судов длиной более 30 м в темных арктических водах.

Компания Satellogic запустила разработанный ею спутник 🛰 UzmaSAT-1 (NewSat-45) оптического высокодетального наблюдения, предназначенный для малайзийской компании Uzma.

Компания TRL Space из Чехии отправила в космос аппарат 🛰 TROLL — CubeSat 6UXL, оснащенный гиперспектральной камерой от Simera Sense.

Французская Absolut Sensing запустила 🛰 GESat GEN1 — CubeSat 16U для мониторинга выбросов метана.

Болгарская компания Endurosat представила 🛰 Balkan-1 — CubeSat 16U с мультиспектральным сканером с разрешением 1,5 м и бортовым искусственным интеллектом для обработки изображений. Аппарат является первенцем спутниковой группировки, создание которой поддерживается ESA и Европейским союзом.

Пакистан запустил 🛰 PAUSAT-1 — CubeSat 16U спутник, созданный Пакистанским авиационным университетом и турецким ITU SSDTL, с полезной нагрузкой для получения гиперспектральных снимков.

Индийская компания Pixxel вывела на орбиту первые три спутника из группировки гиперспектральной съемки 🛰 Fireflies. 52-килограммовые аппараты должны вести съемку в более 150 спектральных каналах с разрешением 5 м и шириной полосы обзора 40 км.

Компания Argotec разработала спутник 🛰 IRIDE-MS2-HEO-1 для своей группировки HEO (Hawk for Earth Observation), которая является частью итальянской системы наблюдения Земли IRIDE. Спутники HEO оснащены оптической камерой с возможностью обработки изображений на борту.

Испанская компания Satlantis запустила 🛰 GARAI A — первый из пары 115-килограммовых спутников с двумя системами камер для съемки в видимом и коротковолновом инфракрасном (ИК) диапазонах (VNIR/SWIR).

🛰 SkyBee-1 — первый аппарат группировки HiVE немецкой компании Constellr. Эти спутники будут вести съемку поверхности земли в тепловом ИК диапазоне.

Еще одна немецкая компания, OroraTech, запустила 🛰 Forest-3 — CubeSat 8U для съемки в тепловом ИК диапазоне. Спутник предназначен для обнаружения лесных пожаров.

Unseen Labs добавила спутник 🛰 BRO-16 к своей группировке радиочастотного наблюдения, предназначенной для морского мониторинга. Последние спутники BRO были форм-фактора CubeSat 8U.

🛰 JAY-C/-D1/-D2 — тройка 30-килограммовых спутников с многочисленными датчиками, которые будут использоваться для обнаружения и идентификации наземных и воздушных целей в канадском арктическом регионе. Аппараты разработаны UTIAS Space Flight Laboratory (SFL) и, по-видимому, является группировкой Gray Jay, созданной SFL для Defence Research and Development Canada.

#ОАЭ #LST #гипер #sigint #испания #германия #индия #италия #оптика #франция #болгария #канада

Спутник ДЗЗ

15 Jan, 10:41


Спутники ДЗЗ миссии SpaceX Transporter-12

14 января 2025 года в 19:09 всемирного времени с площадки SLC-4E Базы Космических сил США “Ванденберг” (шт. Калифорния, США) в рамках миссии Transporter-12 выполнен пуск ракеты-носителя 🚀 Falcon-9FT Block-5 (F9-424) со 131 спутником.

Пуск прошел успешно. Выведение полезной нагрузки со второй ступени на солнечно-синхронные орбиты высотой примерно 510–520 км и 590–620 км началось почти через час после старта. Всего произошло отделение 101-й полезной нагрузки от Falcon 9, 3 из которых были транспортными контейнерами (orbital transfer vehicles), несущими, по крайней мере, еще 14 спутников для последующего развертывания.

Полезная нагрузка Transporter-12 варьировалась от пикоспутников массой менее килограмма до спутника массой три четверти тонны. Среди компаний-интеграторов, работающих с полезной нагрузкой в этом полете — Exolaunch, ISILaunch, SEOPS, Maverick Space, D-Orbit и Impulse Space. Использовались транспортные контейнеры D-Orbit и Impulse Space.

Рассмотрим спутники дистанционного зондирования Земли в составе миссии Transporter-12.

На вершине блока полезной нагрузки находился 🛰 MBZ-SAT — спутник оптического наблюдения высокого пространственного разрешения, разработанный Космическим центром имени Мохаммеда бин Рашида (Mohammed Bin Rashid Space Centre) в Объединенных Арабских Эмиратах (ОАЭ). Его масса составляет 750 кг, а размеры в развернутом состоянии — 3 м x 5 м.

Planet запустила 🛰 Pelican-2, второй спутник из новой линейки аппаратов сверхвысокого разрешения (первый спутник был запущен миссией Transporter 9). Кроме того, Planet запустила 36 спутников 🛰 SuperDove, чтобы обновить свою группировку обзорной мультиспектральной съемки Flock.

Финская ICEYE запустила 4 своих 90-килограммовых радарных 🛰 спутника. В их число входит аппарат, заказанный компанией Space42 из ОАЭ.

Источник

#ОАЭ #planet #iceye #оптика #SAR

Спутник ДЗЗ

14 Jan, 12:52


В выпуске ⬆️ есть нашумевшая статья о перспективах государственно-частного партнерства в российской космонавтике и статья коллеги Control Space об оценке стоимости компаний “New Space”.

Спутник ДЗЗ

14 Jan, 12:47


Журнал “Экономика космоса” — № 10 / 2024

Журнал публикует исследования экономики отечественной и международной космической деятельности. Издается АО «Организация «Агат» (Роскосмос). Периодичность — 4 выпуска в год.

🔗 Все номера журнала находятся в открытом доступе.

В текущем выпуске:

Спасская М.В., Тхамадокова И.Х., Ивкин А.Н. Создание рыночных условий и коммерциализация спутниковых услуг в России: предпосылки и механизм реализации
Лисов А.А., Кабанов А.А., Федоров И.А., Моричев М.В. Принципы разработки IT-решений цифровизации современного производства ракетно-космических предприятий
Рыжикова Т.Н., Старожук Е.А. Формирование структурной модели прибыли предприятий аэрокосмической отрасли
Смирнов Д.П., Полушкин Ю.В. Об экономической целесообразности снижения кратности повторного использования многоразовых ступеней ракеты-носителя
Хрусталев Е.Ю., Жамкова В.С., Точилкина О.С. Преимущества применения методов агент-ориентированного моделирования к оценке эффективности деятельности организаций ракетно-космической промышленности
Пермяков Р.В. Оценка стоимости компаний «New Space» с использованием сравнительных рыночных коэффициентов
Рехтина Н.В., Линник Е.А. Вопросы правового регулирования предоставления национального режима при осуществлении закупок

#журнал

Спутник ДЗЗ

14 Jan, 08:47


Современные проблемы дистанционного зондирования Земли из космоса — №6 / 2024

28 декабря вышел шестой номер журнала в 2024 году.

🔗 Все статьи доступны для скачивания.

В этом номере:

📖 ОБЗОРНЫЕ СТАТЬИ

Г.А. Аванесов, Б.С. Жуков, М.В. Михайлов Исследование причин и последствий таяния льдов Арктики

📡 МЕТОДЫ И АЛГОРИТМЫ ОБРАБОТКИ СПУТНИКОВЫХ ДАННЫХ

В.С. Ракитин, Е.И. Фёдорова, Н.С. Кириллова, Н.В. Панкратова, Н.Ф. Еланский Оценка дрейфа качества орбитальных наблюдений и применение методов коррекции к долговременным рядам на примере измерений общего содержания метана с помощью спутникового прибора AIRS
Е.Е. Волкова, А.И. Андреев, М.А. Бурцев, А.А. Мазуров, А.М. Матвеев, Е.И. Холодов Технология автоматической коррекции географической привязки данных прибора МСУ-МР КА «Метеор-М»

🛰 ПРИБОРЫ И СИСТЕМЫ СПУТНИКОВОГО ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ

М.Р. Морданов, С.Л. Сафронов, Е.С. Хнырева Разработка системы охлаждения батареи фотоэлектрической с концентраторами для космического аппарата дистанционного зондирования Земли типа «АИСТ-2»
И.В. Полянский, Б.С. Жуков, Т.В. Кондратьева Первые результаты работы и оценка качества целевой информации комплекса многозональной спутниковой съёмки КМСС-2 на космическом аппарате «Метеор-М» № 2-4

🖥 МЕТОДЫ И ТЕХНОЛОГИИ ПОСТРОЕНИЯ ИНФОРМАЦИОННЫХ СИСТЕМ ДИСТАНЦИОННОГО МОНИТОРИНГА

А.А. Тронин, М.П. Васильев, Г.М. Неробелов, В.С. Урманов, А.В. Киселев Базы данных и сервисы спутниковых измерений газового и аэрозольного состава атмосферы
М.И. Бабокин, П.Е. Шимкин, В.Г. Степин Применение дифференциального интерферометрического РСА для обнаружения кратковременных изменений на поверхности Земли
А.А. Прошин, E.А. Лупян, М.А. Бурцев Особенности использования алгоритма сжатия изображений LERC для архивации данных ДЗЗ
Д.М. Ермаков, Е.В. Пашинов, Д.В. Лозин, Е.А. Лупян, С.А. Втюрин Погрешность расчёта выбросов угарного газа от крупных лесных пожаров по балансовой методике на основе данных спутникового мониторинга

⛏️ ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ В ГЕОЛОГИИ И ГЕОФИЗИКЕ

А.А. Златопольский Статистические масштабные закономерности характеристик рельефа (по растрам модели стока)

🌳 ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ РАСТИТЕЛЬНЫХ И ПОЧВЕННЫХ ПОКРОВОВ

Б.В. Раевский, В.В. Тарасенко Картографирование наземного покрова заповедника «Кивач» и прилегающих территорий с использованием данных дистанционного зондирования
В.В. Виноградова, Т.Б. Титкова Устойчивость ландшафтов Калмыкии и Дагестана к долговременным изменениям климата
С.С. Шинкаренко, С.А. Барталев, Е.А. Дюкарев, Е.А. Головацкая, И.А. Сайгин Развитие методов картографирования болотных комплексов Западной Сибири на основе временных рядов данных дистанционного зондирования и машинного обучения
Е.И. Пономарёв, Е.Г. Швецов Сопоставление оценок отпада древостоев Сибири после воздействия пожаров по дистанционным данным
Х.Б. Куулар, А.Ф. Чульдум Динамика суммы осадков Республики Тыва по наземным и глобальным данным
Е.А. Лупян, Д.В. Лозин, С.А. Барталев, И.В. Балашов, Ф.В. Стыценко Оценка повреждений российских лесов пожарами в XXI веке на основе анализа интенсивности горения по данным прибора MODIS

#журнал

Спутник ДЗЗ

14 Jan, 08:47


Современные проблемы дистанционного зондирования Земли из космоса — № 6 / 2024 (продолжение)

🌊 ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ВОДНЫХ ОБЪЕКТОВ, ОКЕАНА И ЛЕДЯНЫХ ПОКРОВОВ

Т.В. Белоненко, В.С. Травкин, В.Г. Гневышев, А.В. Кочнев Влияние топографии на перемещение мезомасштабных вихрей на материковом склоне Новозеландского плато
В.М. Степаненко, И.А. Репина, А.И. Медведев, В.А. Романенко Воспроизведение моделью LAKE температуры поверхности крупнейших озёр Земли: система автоматической калибровки по данным MODIS
О.В. Никитин, Н.Ю. Степанова, Т.А. Кондратьева, Р.С. Кузьмин, В.З. Латыпова Пространственно-временная динамика «цветения» фитопланктона в Куйбышевском водохранилище по данным спутникового зондирования
Д.А. Ковалдов, Ю.А. Титченко, В.Ю. Караев, М.А. Панфилова, В.П. Лопатин, В.Ф. Фатеев К вопросу об определении диаграммы рассеяния ледяного покрова по данным бистатического дистанционного зондирования в L-диапазоне
Д.С. Сазонов, И.Н. Садовский, А.В. Кузьмин, Е.В. Пашинов Натурные исследования угловых зависимостей третьего параметра Стокса излучения морской поверхности на частоте 37 ГГц
С.А. Ермаков, В.А. Доброхотов, И.А. Сергиевская Лабораторные исследования радиолокационного рассеяния на поверхностных волнах, распространяющихся над погружённой в воду вертикальной пластиковой плёнкой
И.Н. Садовский, Д.С. Сазонов Оценка влияния асимметрии крупных волн на собственное излучение морской поверхности
В.В. Тихонов, Д.Р. Катамадзе, Т.А. Алексеева, Е.В. Афанасьева, Ю.В. Соколова, И.В. Хвостов, А.Н. Романов Анализ сплочённости ледяного покрова в Карском море по данным радиометра MIRAS спутника SMOS с использованием методов машинного обучения

🌍 ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ ИОНОСФЕРЫ

О.В. Антоненко, А.С. Кириллов Исследование собственного ночного свечения атмосфер Земли и Марса в различных полосах молекулярного кислорода методом дистанционного зондирования из космоса

📝 КРАТКИЕ СООБЩЕНИЯ

С.С. Шинкаренко, С.А. Барталев Пыльные бури на юге европейской части России осенью 2024 г.
С.В. Станичный, Р.Р. Станичная, Е.П. Давыдова Аномальное охлаждение поверхностного слоя в западной части Чёрного моря под воздействием интенсивного атмосферного циклона в начале октября 2024 г.
О.А. Гирина, А.Г. Маневич, Д.В. Мельников, А.М. Константинова, И.М. Романова, И.А. Уваров, А.А. Сорокин, Л.С. Крамарева, С.П. Королев, С.И. Мальковский Дистанционный мониторинг эксплозивного извержения вулкана Безымянный 24 июля 2024 г.
Е.В. Пашинов, Д.В. Лозин, С.А. Втюрин, Д.А. Кобец Первые результаты расчёта баланса парниковых газов для регионов РФ по балансовой методике
К.А. Трошко, П.В. Денисов, Е.А. Дунаева, Д.Е. Плотников, В.А. Толпин Дистанционное наблюдение развития озимых культур в России в осенне-зимний период 2024 года
С.А. Барталев, E.А. Лупян, О.Ю. Лаврова, М.И. Митягина, Н.Н. Ладонина Международная научная школа-конференция молодых учёных по фундаментальным проблемам дистанционного зондирования Земли из космоса: двадцать лет спустя
E.А. Лупян, О.Ю. Лаврова, С.А. Барталев, Д.А. Кобец Итоги Двадцать второй Международной конференции «Современные проблемы дистанционного зондирования Земли из космоса»

#журнал

Спутник ДЗЗ

13 Jan, 13:02


Данные Major TOM embeddings

Выпущен глобальный открытый набор данных Major TOM embeddings, разработанный польской компанией CloudFerro S.A. и лабораторией Φ-lab, представляющей ESA.

📊 Данные: более 8 миллионов изображений Sentinel-1 и Sentinel-2.
💡 Модели: базовые модели (foundation models) включают SigLIP, DINOv2 и SSL4EO.
📖 Подробности: Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space
🖥 Блокнот, демонстрирующий работу с Major TOM embeddings

Этот набор данных является частью работ по созданию стандарта Major TOM.

Источник

#датасет

Спутник ДЗЗ

13 Jan, 10:07


MapBiomas: спутниковое картографирование Бразилии

MapBiomas — сеть НПО, университетов, лабораторий и технологических стартапов, начавшая свою работу в Бразилии в 2015 году.

🗺 MapBiomas проводит ежегодное картографирование:

* почвенно-растительного покрова/землепользования (Land Use and Cover Maps, Land Use and Land Cover 10 Meters Maps)
* содержания органических веществ в почве (Soil Carbon Stock Maps)
* орошаемых земель (Irrigation Maps)
* состояния пастбищ (Pasture Vigor Condition Maps)
* предприятий по добыче полезных ископаемых (Mining Maps)
* вторичных лесов (Secundary Vegetation Maps)
* обезлесения и деградации леса (Deforestation Maps, Degradation Maps)
* коралловых рифов (Coral Reefs Maps)
* городской застройки (Urban Areas Maps)

и ежемесячный мониторинг:

* поверхностных вод (Water Surface Maps)
* гарей (Fire Scars Maps)

Большинство карт строится по данным спутников 🛰 Landsat в период с 1985 по 2023 год и имеет пространственное разрешение 30 метров.

🌳 С помощью сервиса мониторинга обезлесения MapBiomas Alerta (https://plataforma.alerta.mapbiomas.org/mapa) еженедельно проверяются и составляются отчеты по каждому случаю обезлесения, обнаруженному в Бразилии с января 2019 года.

MapBiomas Alerta использует интегральные предупреждения об обезлесении, основанные на использовании метода GLAD-L и данные нескольких национальных систем предупреждений об обезлесении. Пространственное разрешение варьируется, в зависимости от используемой системы предупреждений.

Информация о точности карт в целом и по отдельным классам почвенно-растительного покрова/землепользования для каждого года представлена на странице оценки точности. Более подробную информацию о методе можно найти на 🔗 сайте.

🖥 У MapBiomas есть API (в том числе, у MapBiomas Alerta).

Данные MapBiomas (https://data.mapbiomas.org) распространяются под свободной лицензией Creative Commons CC-BY-SA.

Как правило, экспортировать из MapBiomas можно:

* ежемесячные отчеты (Excel)
* временные ряды за многолетний период (CSV)
* статистику по штатам

Данные MapBiomas Alerta экспортируются в виде шейпфайлов.

#данные #лес #сельхоз #бразилия #вода #пожары

Спутник ДЗЗ

12 Jan, 11:59


Maxar опубликовал снимки значимых событий 2024 года

Бюро новостей Maxar Intelligence опубликовало спутниковые снимки, посвященные значимым событиям 2024 года. Полностью, прочитать и посмотреть можно посмотреть 🔗 здесь. Мы отобрали наиболее выразительные, с нашей точки зрения, снимки.

1️⃣ Ежегодный фестиваль льда и снега в Харбине (Китай). Снимок сделан спутником WorldView-3 в ночь на 11 января 2024 года. Хорошо видны ледяные скульптуры, разбросанные по ледяной площадке.

2️⃣ Протестующие против американо-британских авиаударов по Йемену на улицах Саады (Йемен). Снимок сделан 12 января 2024 года спутником WorldView-2.

3️⃣ Крупный лесной пожар в Техасе на снимке 28 февраля 2024 года, сделанном WorldView-2. Для визуализации огня использованы каналы коротковолнового инфракрасного диапазона.

4️⃣ Мост Фрэнсиса Скотта Ки в штате Мэриленд обрушился 26 марта 2024 года, после того как контейнеровоз “Дали” задел одну из ключевых опор моста. На снимке, сделанном спутником GeoEye-1 26 марта, крупным планом показаны контейнеровоз и рухнувший мост.

5️⃣ Наводнение в Оренбургской области. На снимке от 3 апреля 2024 года, сделанном спутником WorldView-3, показаны “паводковые воды в районе авиабазы Оренбург в России”.

6️⃣ 2 мая 2024 года компания Maxar запустила два первых спутника WorldView Legion с базы Космических сил США Ванденберг (шт. Калифорния, США). На этом снимке, сделанном GeoEye-1, показана ракета Falcon 9 со спутниками WorldView Legion за 11 минут до пуска.

7️⃣ Последствия ураганов “Элен” и “Милтон” на юго-востоке США. На снимке, сделанном WorldView-2 7 октября 2024 года, видно, как обломки от наводнения, вызванного ураганами, засоряют озеро Люр (Lure) в Северной Каролине .

8️⃣ На снимке спутника WorldView Legion от 15 декабря 2024 года видно скопление военных грузовиков, бронетранспортеров и личного состава на российской авиабазе Хмеймим (Сирия). Рядом с техникой находится транспортный самолет Ил-76.

#снимки

Спутник ДЗЗ

12 Jan, 10:36


118 лет назад, 12 января 1907 года родился Сергей Павлович Королев — выдающийся советский конструктор ракетно-космических систем, председатель Совета главных конструкторов СССР.

#история

Спутник ДЗЗ

12 Jan, 09:03


Американские Виргинские острова

На снимке 1️⃣, сделанном спутником Sentinel-2 23 февраля 2024 года, изображены Американские Виргинские острова — группа островов в Карибском море, расположенная в 60 км восточнее Пуэрто-Рико. Крупный остров на юге — это Санта-Крус. Севернее лежат Сент-Томас (на западе) и Сент-Джон (на востоке). К северо-востоку от них находятся Британские Виргинские острова.

Виргинские острова состоят из трех частей 2️⃣: Британские Виргинские острова, Американские Виргинские острова и Испанские Виргинские острова.

Испанские Виргинские острова, в том числе Пуэрто-Рико, были переданы США в 1898 году по итогам Испано-американской войны. Сейчас эти острова относятся к Пуэрто-Рико.

Американские Виргинские Острова до 17 января 1917 года были Датской Вест-Индией. Да-да, у Дании была своя вест-индская компания и своя колония в Карибском море (основанная в 1672 году), куда завозили рабов из Африки. В 1917 году Датская Вест-Индия была приобретена США у Дании за 25 млн долларов.

#снимки

Спутник ДЗЗ

11 Jan, 15:58


Специалисты АО «РЕШЕТНЁВ» создают технологию унификации раскрытия крупногабаритных антенн и солнечных батарей космических аппаратов.

В ушедшем году на предприятии изготовлено оборудование и оснастка для производства и наземной экспериментальной отработки универсальных управляемых тормозных устройств, беспроводных датчиков, электродвигателей, спусковых устройств и датчиков силы.

Эти устройства обеспечат раскрытие бортовых антенн и солнечных батарей по заданному алгоритму – в синхронном, последовательном, либо смешанном режиме. При этом изменять конструкцию системы трансформации крупногабаритных механических систем не потребуется.

В 2025 году планируется изготовить экспериментальные образцы базовых элементов систем раскрытия и провести их конструкторско-доводочные испытания.

Внедрение технологии унификации раскрытия крупногабаритных механических трансформируемых систем позволит компании «РЕШЕТНЁВ» сократить сроки создания космической техники и снизить её себестоимость.

Спутник ДЗЗ

11 Jan, 10:28


Остров Недоразумения

В Охотском море в 20 километрах от Магадана расположен остров Недоразумения (59.5825, 150.398).

В конце 1910-х годов гидрографическая экспедиция не заметила маленький остров, который из-за своей окраски сливался с берегом материка. Поэтому на картах в этом месте появился полуостров. Ошибку вскоре нашли и исправили, а остров получил свое необычное название.

📸 Снимок Sentinel-2 (05.01.2025, естественные цвета)

#снимки

Спутник ДЗЗ

11 Jan, 08:05


Внеземная радарная съемка

Компания Plextek (Великобритания) опубликовала статью "Sensing in Space" — об обнаружении и отслеживании космических объектов с помощью радаров, размещенных на борту спутников.

Статья носит рекламный характер. Компания продает свою технологию mmWave, которая, по ее словам, представляет собой “точный и эффективный способ обнаружения объектов размером от миллиметра до гораздо более крупных, таких как мертвые или некооперирующие спутники”. Тем не менее, популярный рассказ о применяемых технологиях и аргументы в пользу выбора радаров для внеземной съемки могут показаться интересными.

📝На сайте Plextek есть раздел с документами, которые можно скачать после бесплатной регистрации.

#SAR #debris #микроволны

Спутник ДЗЗ

10 Jan, 14:31


Продолжаем наш марафон снимков с орбиты — спутник «Метеор-М» № 2-4 запечатлел пожары, охватившие юго-западную часть США и Мексику.

Спутник ДЗЗ

10 Jan, 10:41


Анимация очагов возгораний в округе Лос-Анджелес (1–9 января 2025 г.)

Спутник ДЗЗ

10 Jan, 10:36


Данные FIRMS за 1–9 января 2025 г.

Спутник ДЗЗ

10 Jan, 10:35


Карта очагов возгорания (термоточек) в окрестностях Лос-Анджелеса (шт. Калифорния, США) по данным NASA FIRMS за период с 1 по 9 января 2025 г.

Основные очаги сосредоточены в двух городах округа Лос-Анджелес — Санта-Моника и Пасадина.

📝 О сборе данных FIRMS мы рассказывали здесь.

#пожары

Спутник ДЗЗ

10 Jan, 10:22


📸 Разрушительный пожар в Лос-Анджелесе: фото с орбиты

Александр Горбунов сделал серию снимков пожаров, которые охватили Южную Калифорнию в начале недели. Площадь возгораний — более 1300 гектаров.

По словам метеорологов, причина распространения огня — сильные ветра и сухая погода. В регионе объявлен режим масштабного стихийного бедствия.

Спутник ДЗЗ

09 Jan, 13:46


Пожары в окрестностях Лос-Анджелеса

В начале января 2025 года на холмах округа Лос-Анджелес вспыхнули многочисленные разрушительные лесные пожары. Причинами стали длительная засушливая погода и ветер, порывы которого достигали 100 миль в час. По данным Cal Fire (https://www.fire.ca.gov) на 8 января горело несколько крупных пожаров, которые уничтожили тысячи строений и заставили власти издать приказ об эвакуации в нескольких частях округа.

Один из таких пожаров, Palisades Fire, показан на 📸 снимке, сделанном спутником Sentinel-2 утром 7 января над районом Пасифик-Палисейдс (Pacific Palisades). Дым от пожара распространялся в сторону Тихого океана и во второй половине дня, что можно проследить по данным прибора MODIS спутника Aqua или приборов VIIRS спутников NOAA.

#снимки #пожары

Спутник ДЗЗ

09 Jan, 11:09


QuickBird — коммерческий спутник дистанционного зондирования Земли компании DigitalGlobe. На момент запуска, в октябре 2001 года, QuickBird имел самое высокое пространственное разрешение среди коммерческих спутников: 61 см в панхроматическом канале и 2,44 м в видимом и ближнем инфракрасном диапазонах (при съемке в надир).

Спутник создан компанией Ball Aerospace & Technologies (камера — компанией Kodak). Эксплуатировался до января 2015 года.

1️⃣ Meкка на снимке QuickBird с разрешением 0,6 м
2️⃣ Эль-Ферроль (Испания), разрешение 2,4 м.

📝 Примерные цены на снимки QuickBird в октябре 2004 года.

#снимки #история

Спутник ДЗЗ

09 Jan, 08:41


Cecil предоставит доступ к данным Google Earth Engine на своей онлайн-платформе

Австралийская компания Cecil заключила соглашение с Google о предоставлении данных Google Earth Engine (GEE) на платформе Cecil (https://cecil.earth). Это даст клиентам Cecil доступ к данных из каталога GEE, который содержит более 600 наборов данных и постоянно пополняется.

Первым набором данных GEE, который появится на платформе Cecil, станет Google Dynamic World — динамическая карта классов землепользования и почвенно-растительного покрова.

Сейчас платформа Cecil позволяет получать и обрабатывать данные о биомассе растительности, обезлесении, а также карты классификации земной поверхности. Взаимодействие пользователя с платформой происходит на языке Python.

Сведения о стоимости услуг на платформе не опубликованы, но, судя по 📸 предоставляемым данным, едва ли эти услуги будут бесплатными.

🛢 Доступные наборы данных

📝 Cecil на Substack

#софт #австралия

Спутник ДЗЗ

08 Jan, 12:02


Сопоставление результатов подспутниковых измерений влажности почвы с данными SMAP

📖 Бобров П.П., Беляева Т.А., Костычов Ю.А., Крошка Е.С., Родионова О.В., Ященко А.С. Подспутниковые измерения влажности и диэлектрической проницаемости почв на частотах от 1 МГц до 3 ГГц и сопоставление с данными SMAP

Описана методика и техника измерений комплексной диэлектрической проницаемости почв в полевых условиях и проведены наземные измерения — на пяти полях в разных районах Омской области в летний и осенний периоды. Диэлектрическая проницаемость почв определялась в слое 0–5 см с последующим определением влажности и сухой плотности образца почвы. Параллельно определялась влажность почвы в слоях 0–2 см и 2–4 см.

Проведено сравнение значений влажности, полученных при контактном отборе проб, и восстановленных по данным дистанционных микроволновых радиометрических измерений — данным спутника SMAP (Soil Moisture Level 3, пространственное разрешение — 9 км). Результаты показывают, что в большинстве случаев дистанционно определяемые значения влажностей выше определяемых контактным способом. Пересчет содержания глины из системы Качинского (частицы размером менее 10 мкм) в систему USDA (частицы размером менее 2 мкм) показал, что используемые в алгоритме восстановления влажности SMAP значения содержания глины (в системе USDA) превышают реальные значения. Это является возможной причиной завышенных значений влажности.

📚 Доклад

#почва #микроволны

Спутник ДЗЗ

08 Jan, 10:06


SARvey — открытое программное обеспечение для анализа временных рядов радарных интерферограмм (InSAR). Работает на Linux, Mac и Windows WSL.

SARvey разработан Андреасом Питером (Andreas Piter), аспирантом из Института фотограмметрии и геоинформации при Лейбницком университете Ганновера (Германия).

SARvey работает с готовыми корегистрированными стеками данных в формате MiaplPy (получить их можно, например, с помощью ISCE). Он выполняет анализ постоянных рассеивателей (Persistent Scatterers) и распределенных рассеивателей (Distributed Scatterers) чтобы получить временной ряд смещений земной поверхности.

🖥 Репозиторий
📚 Документация
🛢 Тестовые данные

📊 Схема обработки данных в SARvey до получения рядов смещений поверхности

#InSAR #софт

Спутник ДЗЗ

08 Jan, 07:58


В ушедшем году на первом спутнике федерального проекта «Сфера», созданном специалистами железногорского предприятия, отработан новый способ ориентации космического аппарата.

Его отличительная особенность – исключение солнечного датчика и измерителя угловой скорости из стандартного приборного состава, который ранее использовался на низкоорбитальных спутниках. На космическом аппарате-демонстраторе «СКИФ-Д» их функции выполнили магнитометр и звёздный датчик. Решетнёвцы также создали новые алгоритмы для проведения режимов успокоения аппарата и его ориентации на Солнце.

Такой подход позволил удешевить изготовление спутника «СКИФ-Д» и сократить объём испытаний. Отработка в условиях космоса подтвердила верность технических решений, предложенных специалистами компании.

Новый способ ориентации будет применён на космических аппаратах для многоспутниковой системы передачи данных «Марафон IoT». Ведётся работа по адаптации данного метода для аппаратов «Гонец-М1» и «СКИФ».

Спутник ДЗЗ

07 Jan, 11:03


IKONOS

24 сентября 1999 года с космодрома Ванденберг (шт. Калифорния, США) был запущен на орбиту IKONOS — первый коммерческий спутник дистанционного зондирования Земли со сверхвысоким (< 1 м) пространственным разрешением. Разработанная фирмой Kodak оптико-электронная камера позволяла получать снимки в полосе обзора шириной 11 км — в панхроматическом канале с разрешением от 0,8 м и в четырех каналах видимого и ближнего инфракрасного диапазонов с разрешением от 3,2 м. Спутниковую платформу разработала и изготовила компания Lockheed Martin.

Оператором спутника первоначально являлась Space Imaging Corporation, созданная компаниями Raytheon и Lockheed Martin. После серии перепродаж и слияний, она влилась в компанию DigitalGlobe (2013 г.), которая, в свою очередь стала частью Maxar (2017 г.).

1️⃣ Водопад Виктория на реке Замбези в Южной Африке
2️⃣ Озеро Аккеси на японском острове Хоккайдо
3️⃣ Атолл Бора-Бора во Французской Полинезии в Тихом океане

Источник: галерея снимков IKONOS

Снимки IKONOS продавались из расчета за квадратный километр и классифицировались по степени точности позиционирования. Наименее точные продукты имеют погрешность регистрации 50 метров, наиболее точные — 2 метра. Соответственно варьировалась и цена на снимки.

📝 Примерные цены на снимки IKONOS по состоянию на сентябрь 2004 года.

#снимки #история

Спутник ДЗЗ

06 Jan, 13:49


Китайское метеорологическое управление начало использовать данные коммерческих метеоспутников

Китайское метеорологическое управление (China Meteorological Administration, CMA) начало использовать данные двух группировок малых коммерческих метеорологических спутников для прогнозирования погоды.

Группировка из 23 спутников Tianmu-1 и 12 спутников Yunyao-1 начали предоставлять данные в CMA 30 декабря. В настоящее время группировка Tianmu-1 ежедневно поставляет около 30 000 радиозатменных профилей, а Yunyao-1 — около 15 000 профилей.

По данным радиозатменных измерений можно восстановить температуру, давление и влажность атмосферы в плоскости орбиты. Кроме того, радиозатменный метод позволяет восстановить значение электронной плотности в ионосфере.

Данные радиозатменных наблюдений обрабатываются на облачной платформе больших данных CMA Tianqing и используются в различных оперативных модулях, включая наблюдение и прогнозирование, глобальный мониторинг тайфунов и краткосрочное прогнозирование сильных конвективных погодных явлений. Они также применяются в исследованиях в области изменения климата.

Данные обеих группировок используются не только для зондирования атмосферы и ионосферы, но также и для определения характеристик поверхности по отраженному сигналу ГНСС — ГНСС-рефлектометрии.

Национальное управление океанических и атмосферных исследований США (NOAA) также использует данные коммерческих метеоспутников для улучшения прогнозов погоды.

NOAA начало поиск поставщиков данных в 2016 году, развернув программу Commercial Weather Data Pilot. С 2020 года NOAA закупает радиозатменные данные у компаний GeoOptics и Spire. В 2022 году радиозатменные данные для NOAA начала поставлять компания PlanetIQ.

🔗 О программе закупок коммерческих метеоданных NOAA.

📖 Using the Commercial GNSS RO Spire Data in the Neutral Atmosphere for Climate and Weather Prediction Studies (2023)

#ro #GNSSR #погода #атмосфера #китай #США

Спутник ДЗЗ

06 Jan, 11:33


Отвечаем на вопросы читателей.

Лимбовое зондирование атмосферы — это метод зондирования различных слоев атмосферы посредством наблюдения по касательному лучу, не пересекающему поверхность Земли.

На рисунке* показаны различные схемы зондирования атмосферы со спутников:

1️⃣ надирные измерения рассеянного излучения Солнца (метод рассеяния);
2️⃣ измерения излучения Солнца, рассеянного под углами к надиру (метод рассеяния);
3️⃣ лимбовые измерения солнечного излучения (метод прозрачности);
4️⃣ надирные измерения собственного излучения атмосферы (эмиссионный метод);
5️⃣ лимбовые измерения собственного излучения атмосферы (эмиссионный метод);
6️⃣ измерения яркости горизонта Земли (метод наклонных трасс).

*Захаров В. М. (ред.) Лазерное зондирование атмосферы из космоса. — Л.: Гидрометеоиздат, 1988.

#атмосфера #основы

Спутник ДЗЗ

06 Jan, 08:41


Заснеженный Кабул на снимке 🛰 спутника Sentinel-2, сделанном 5 января 2025 года (естественные цвета).

Снег в столице Афганистана — не редкость. Но в последние годы зимы были малоснежными. Так что выпавший 2-го января снег, первый нынешней зимой, порадовал не только детей, но и взрослых — воздух стал чище, а виды на урожай улучшились.

Снежный период года в Кабуле длится с 8 декабря по 9 марта. Месяц с наибольшим количеством снега — февраль, когда толщина снежного покрова может превышать 7 см.

#снимки #снег

Спутник ДЗЗ

05 Jan, 14:19


📸 Снимок Гренландии, сделанный с борта стратостата с высоты около 40 км.

Стратостат был запущен командой Французского космического агентства (CNES) в шведском городе Кируна. Поднявшись на высоту 40 км, стратостат перелетел через Атлантический океан, прошел над Гренландией, и через четыре дня приземлился на острове Баффинова Земля в Канаде. В полете проводилось тестирование прибора GLORIA для лимбового зондирования атмосферы по проекту CAIRT — одному из кандидатов на роль миссии ESA Earth Explorer 11.

#снимки #атмосфера

Спутник ДЗЗ

05 Jan, 09:04


Forest Data Partnership опубликовал карту ненарушенных лесов, а также карты распространения какао, масличной пальмы и каучукового дерева

Forest Data Partnership (FDP) — консорциум, объединяющий промышленников, правительственные и некоммерческие организации, заявленная цель которого: остановить и обратить вспять потерю лесов в результате производства сырьевых товаров.

FDP опубликовал на Google Earth Engine карту ненарушенных лесов, а также карты распространения какао, масличной пальмы и каучукового дерева:

🌲 Forest Persistence — карта ненарушенных лесов мира по состоянию на 2020 год. Дает оценку (в диапазоне [0, 1]), которая показывает, занята ли площадь пикселя ненарушенным лесом. Пространственное разрешение — 30 м.
🌴 Palm Probability model 2024a — ежегодные карты распространения масличной пальмы с 2020 по 2023 год. Данные представлены в виде вероятности наличия пальмы в пикселе карты. Модель обеспечивает глобальную точность 92% (при пороге вероятности 0,5). Пространственное разрешение — 10 м. Следующие карты построены по той же методике и с тем же разрешением.
🍃 Cocoa Probability model 2024a — ежегодные карты распространения какао 2020–2023 гг.
🌳 Rubber Tree Probability model 2024a — ежегодные карты распространения каучукового дерева 2020–2023 гг.

🌍 Скрипт GEE

В качестве исходных данных для моделей использованы годовые композиты снимков Sentinel-1, Sentinel-2, ALOS PALSAR-2, а также данные цифровых моделей рельефа Jaxa (AW3D30) и Copernicus (GLO-30).

🖥 Модели реализованы в TensorFlow и находятся в открытом доступе на GitHub.

🔗 Популярное описание результатов на Medium

📖 Описание методики построения карт: https://arxiv.org/pdf/2405.09530

#данные #GEE #лес #сельхоз

Спутник ДЗЗ

04 Jan, 13:52


Продолжим про 🛰 спутники SPOT.

Красивые картинки, в основном по снимкам SPOT 6 и 7, можно найти в 🔗 Галерее снимков спутников Airbus.

1️⃣ Кроноцкая сопка на полуострове Камчатка (снимок SPOT от 14 июня 2020 года).
2️⃣ Остатки Аральского моря в Казахстане (снимок 15 мая 2019 года).

Любителям более зеленой травы напомним о ценах двадцатилетней давности на спутниковые снимки.

📝 Обзор цен на снимки SPOT по состоянию на октябрь 2004 года. Снимки предоставлялись в течение трех суток, с возможностью срочной доставки в течение суток (по более высокой цене). Полные архивные сцены 1986–2001 гг. были доступны за 1200 евро. В октябре 2004 года 1 евро = 1,27 долларов.

#история #снимки

Спутник ДЗЗ

04 Jan, 08:59


SPOT — Satellite Pour l'Observation de la Terre

Программа SPOT (франц.: Satellite pour l'Observation de la Terre), начатая французским космическим агентством CNES в 1977 году, стала первой европейской программой дистанционного зондирования Земли из космоса. Серия спутников SPOT была разработана CNES совместно с коллегами из Бельгии (SSTC — Belgian scientific, technical and cultural services) и Швеции (SNSB — Swedish National Space Board). За 29 лет работы (1986–2015 гг.) под управлением CNES пять спутников серии SPOT накопили огромный архив оптических снимков среднего (10–20 метров) и высокого (до 2,5 метров) пространственного разрешения.

Спутники SPOT осуществляли съемку в панхроматическом, зеленом, красном и ближнем инфракрасном (ИК) диапазонах с полосой обзора 60 км. Впоследствии (на SPOT 4) к ним добавился коротковолновой ИК диапазон.

🛰 SPOT-1,-2,-3
🛰 SPOT-4
🛰 SPOT-5

SPOT — коммерческая система оптической съемки Земли*. Коммерческим оператором SPOT является, расположенная в Тулузе (Франция), компания Spot Image. Она основана в 1982 году CNES, IGN и производителями космической техники (Matra, Alcatel, SSC и др.). В настоящее время на 99% является дочерней компанией Airbus Defence and Space.

После того как CNES завершила свою программу в 2015 году, компания Airbus Defence and Space продолжила серию SPOT коммерческими спутниками Airbus SPOT 6 и 7. Последний прекратил работать в марте 2023 года, и сейчас на орбите работает только SPOT 6.


*Толчком к разработке SPOT стало повышение цен на данные Landsat в 1984 году.


📸 Снимок Пекина (Китай), сделанный спутником SPOT-5 в 2002 году (разрешение — 2,5 м, после паншарпенинга). В центре сцены — Запретный город.

#снимки #история

Спутник ДЗЗ

03 Jan, 16:21


📸 «Ресурс-П» № 5: первый снимок
 
Сегодня в 10:35 мск проведены первые включения аппаратуры «Геотон-Л1» — основного прибора наблюдения поверхности Земли высокого пространственного разрешения.

Получены первые изображения вдоль трассы полёта над территориями США, Китая и ОАЭ.

Спутник ДЗЗ

03 Jan, 13:38


Выделение значимых спектральных диапазонов для анализа состояния хвойных лесов

📖 Мартинов А.О., Ломако А.А., Литвинович Г. С. Выделение значимых спектральных каналов для анализа состояния хвойных лесов

Задача обнаружения болезней леса на ранних стадиях актуальна и сложна. Часто, по данным ДЗЗ болезнь можно обнаружить лишь тогда, когда предпринимать что-либо уже поздно. Причем это касается не только наблюдений из космоса, но и с БПЛА. В последнем случае, одна из причин состоит в том, что камеры БПЛА не имеют достаточного числа спектральных каналов, необходимых для диагностики состояния леса.

Ученые из Института прикладных физических проблем имени А.Н. Севченко Белорусского государственного университета (Минск, Беларусь) задались целью выделить диапазоны длин волн в спектре отражения, которые позволят обнаружить усыхание елей на ранних стадиях 1️⃣.

Более восьми тысяч спектров, зарегистрированных при помощи беспилотного комплекса авиационного спектрометрирования (БЕКАС) были представлены в пространстве главных компонент. Это позволило провести предварительную классификацию без обучения, убрать спектры, не относящиеся к елям, и выделить для дальнейшего анализа более пяти тысяч спектров елей разной степени усыхания.

Затем выборка спектров была разделена по степени усыхания, с использованием размеченных лесопатологами данных.

К размеченной выборке (около двух тысяч спектров) применили алгоритм классификации Random Forest, который позволяет выделить наиболее значимые для классификации признаки (в нашем случае — спектральные диапазоны). В результате были выделены 2️⃣ наиболее значимые спектральные диапазоны, которые можно использовать в съемочной аппаратуре для обнаружения усыхания хвои на ранних стадиях.

👨🏻‍🏫 Презентация

Интересно было бы взглянуть на применение других 1) методов классификации (например, XGBoost), 2) способов оценки влиятельности признаков в Random Forest (например, treeinterpreter). Значимые диапазоны, полученные разными методами, должны совпадать или хотя бы в значительной степени пересекаться.

#лес

Спутник ДЗЗ

03 Jan, 09:05


Ледник Якобсхавн

Ледник Якобсхавн (англ.: Jakobshavn, гренл. Sermeq Kujalleq — “южный ледник”) на западном побережье Гренландии производит около 10% всех ее айсбергов. Многие айсберги настолько велики, что сразу садятся на мель, оставаясь там годами, пока не растают настолько, чтобы начать дрейфовать. Возможно, айсберг, с которым в 1912 году столкнулся “Титаник”, происходил от ледника Якобсхавн.

На оптическом снимке Sentinel-2 1️⃣, сделанном 5 августа 2024 года, прекрасно виден белый “язык” ледника Якобсхавн в устье фьорда Илулиссат (Ilulissat). Множество айсбергов выглядят белыми точками, разбросанными по фьорду и усеивающими воды залива Диско (Disko), словно звезды на ночном небе. Стоит только помнить, что некоторые из них достигают высоты 100 метров над водой, скрывая большую часть под поверхностью. Периметр самых больших айсбергов, изображенных на снимке, достигает 2 км.

К северу от устья фьорда расположен небольшой городок Илулиссат, а еще дальше к северу светло-коричневым цветом выделяется городской аэропорт. Илулиссат, что в переводе с гренландского означает “айсберги”, — популярное место среди туристов, которые приезжают посмотреть на гигантские айсберги, проплывающие рядом с портом.

На радарном снимке 2️⃣, сделанном 3 августа 2024 года спутником Sentinel-1, показано расположение гигантских айсбергов за два дня до съемки спутником Sentinel-2. Сравнивая эти два снимка, можно проследить движение айсбергов. Обычно, в этом районе айсберги дрейфуют на север в направлении Илулиссата.

#снимки #лед #SAR

Спутник ДЗЗ

02 Jan, 15:07


В федеральном фонде данных ДЗЗ (ФФД) в открытом доступе находятся оперативные глобальные мозаики со спутников “Электро-Л” №2, №3 и №4, а также “Арктика-М” №1 и №2.

Для доступа к данным есть:

🌍 Сайт ФФД ДЗЗ (https://next.gptl.ru) — визуальный интерфейс + ручное скачивание (вот как это делается).
🖥 Хранилище ФФД (https://api.gptl.ru/stac/browser/web-free/) 📸 Тут можно скачать данные вручную, автоматически, а также подгружать в ГИС без скачивания.

Для просмотра данные доступны в мобильном приложении Роскосмоса.

Описание продуктов и доступа к ним есть в 🔗 Руководстве пользователя и в 🔗 Руководстве системного программиста.

Данные представлены в формате geoTIFF в проекциях EPSG:3857 и EPSG:4326.

Мозаики “Электро-Л” и “Арктики-М” находятся в “Mosaics Arctic-M Electro-L collection”:

🌍 L3BT9 — глобальные бесшовные мозаики радиационных температур по тепловому каналу КА “Арктика-М” и “Электро-Л” (справка).
🌍 L3M — глобальные бесшовные мозаики изображений КА “Электро-Л” №2, 3, 4 и КА “Арктика-М” №1 и №2, составленные по данным видимых каналов прибора МСУ-ГС в зоне дня и ИК каналов в зоне ночи (справка).

Почему мозаики? Для геостационарных спутников характерно ухудшение качества информации на краях диска обзора. Соответственно, пользователю нужно выбирать, данными какого спутника воспользоваться для мониторинга интересующей территории. В случае мозаики пользователь избавлен от этой необходимости, так как каждый пиксель мозаики собирается с того спутника, чья подспутниковая точка ближе. В итоге, в мозаику попадает самая качественная информация.

🌍 Mosaics Meteor-M collection — ежесуточные глобальные бесшовные мозаики по данным аппаратуры МСУ-МР КА “Метеор-М” (справка). Для полярноорбитальных КА также характерно ухудшение качества информации на краях строки сканирования. Мозаика составляется таким образом, чтобы каждый пиксель изображения заполнялся данными с того витка, чья середина ближе.

В коллекциях есть картинки для предпросмотра и json-файлы. В последних можно посмотреть стандартный путь к данным в Хранилище, а затем скачивать их автоматически с помощью curl или wget. Также можно скачивать только нужную территорию. Например, с помощью утилит GDAL.

#данные #арктика #россия

Спутник ДЗЗ

02 Jan, 09:04


Извержение Килауэа

23 декабря 2024 года Килауэа, самый молодой и самый активный вулкан на Гавайях (США), после трех месяцев затишья вновь начал извергать фонтаны лавы. Лава изливалась из цепочки трещин у юго-западной стены кратера Халемаумау, который находится внутри Калуапеле — вершинной кальдеры гавайского вулкана. Нынешнее извержение — шестое по счету, произошедшее в этой кальдере с 2020 года.

Гавайская вулканическая обсерватория Геологической службы США (Hawaiian Volcano Observatory) зафиксировала начало извержения в 2:20 утра по местному времени 23 декабря. Фонтаны лавы достигали 80 метров в высоту. К 9:30 утра измерения с борта вертолета вулканической обсерватории показали, что лава распространилась по дну кратера на площади 265 гектаров со средней глубиной около 3 метров.

Снимок кальдеры Килауэа сделан 24 декабря 2024 года спутником Landsat 8 и представлен в ложных цветах (каналы 7, 6 и 8 — SWIR2, SWIR1 и панхроматический), чтобы наглядно показать инфракрасное излучение новой лавы (оттенки красного и желтого цвета).

Шлейф вулканического газа, состоящий в основном из водяного пара, углекислого газа и диоксида серы, тянется к юго-западу от кальдеры и показан на снимке синим цветом. Вулканический газ представлял собой главную проблему извержения, поскольку входящий в его состав диоксид серы может создавать вредную для здоровья дымку — вулканический смог (vog). К счастью, ветер направил шлейф газа в сторону океана.

🌍 Скрипт GEE

#снимки #вулкан #комбинация #GEE

Спутник ДЗЗ

01 Jan, 16:14


🎄1 января на снимках российского геостационарного метеоспутника “Электро-Л” №3 (http://electro.ntsomz.ru/electro/electrol3/)

#снимки

Спутник ДЗЗ

01 Jan, 09:29


Статистика космических и суборбитальных пусков 2024 года

За 2024 год в мире было выполнено 269 пусков ракет: 257 пусков ракет космического назначения и 12 суборбитальных пусков.

Из числа пусков ракет космического назначения: 251 (97,7% от общего числа) был полностью успешным, 2 — завершились частичным успехом и ещё 6 были аварийными (2,3%).

Больше всего космических запусков осуществили США — 152 (59,1% от общего числа). Из них 97,4% осуществили частные компании SpaceX (134 пуск) и Rocket Lab (14 пусков).

На втором месте Китай, который запустил 68 ракет — 26,5% от общего числа. Вклад частных компаний составил 19 пусков (27,9%), которые осуществили ракеты: Ceres 1, Ceres 1S, Gravity 1, Hyperbola 1, Jielong 3, Kinetica 1, Kuaizhou 11, Kuaizhou 1A, ZhuQue-2E. Китай использовал самое большое число разновидностей ракет-носителей — 27.

На третьем месте находится Россия с 17 пусками (6,6% от общего числа).

На долю США, Китая и России пришлось 92,2% космических запусков.

На счету Японии 7 пусков (2 аварийных). У Индии — 5, а у Ирана — 4 пуска, ESA осуществила 3 пуска (1 — частично аварийный), КНДР совершила 1 пуск, ставший аварийным.

Больше всего пусков совершено со стартовых площадок на мысе Канаверал (шт. Флорида, США) — 65. На втором месте База Космических сил США “Ванденберг” (шт. Калифорния, США) — 47 пусков. На третьем — Космический центр имени Кеннеди (шт. Флорида, США) — 26 пусков.

Чаще всего использовалась ракета-носитель (РН) Falcon-9 — 132 старта (49,1% от общего числа). РН Electron стартовали 16 раз. На пуски РН семейства Long March пришлось 49 пусков, а на семейство РН “Союз” — 15 пусков.

📊 Число пусков по месяцам

#справка

Спутник ДЗЗ

01 Jan, 09:23


Статистика космических и суборбитальных пусков 2024 года [источник]

#справка

Спутник ДЗЗ

31 Dec, 11:42


Дорогие читатели!

Спасибо, что вы с нами.
Поздравляем всех с наступающим Новым годом!
Желаем счастья, мира и процветания.
До встречи в новом году!

Спутник ДЗЗ

31 Dec, 10:28


🙏Благодарим, расположив в календарном порядке, телеграм-каналы, делавшие репосты и цитировавшие наши публикации в декабре 2024 года:

* @sibirskiyokean
* @Arctik_Obline
* @SCANEX_news
* @gis_proxima
* @twrussia
* @UzbekistanTtransparentWorld
* @meteovestiru
* @ykuthydromet
* @rscc_rscc
* @bmpd_cast
* @militaryrussiaru
* @yurtaRK
* @great_russia_forever
* @IngeniumNotes
* @agrodt
* @newspacecorp
* @control_space_channel
* @cyberruss
* @dataisdata
* @Kesslersyndrome
* @dobriy_ovchinnikov
* @space78125
* @realprocosmos
* @qgishack
* @solar_lunar

Спасибо, коллеги!

Отдельное спасибо коллегам @control_space_channel и @Kesslersyndrome, которые включили нас в свои списки для чтения.

Спутник ДЗЗ

31 Dec, 08:18


🚀 Космические и суборбитальные запуски в декабре 2024 года

Спутник ДЗЗ

31 Dec, 08:13


Список космических и суборбитальных запусков в декабре 2024 года [источник].

#справка

Спутник ДЗЗ

30 Dec, 09:00


Методика определения элементов вертикального распределения озона по данным “Метеор-М” №2

📖 Акишина С.В., Поляков А.В., Виролайнен Я.А. Методика определения элементов вертикального распределения озона из спектров уходящего теплого излучения

Одним из методов получения информации о вертикальном распределении озона в атмосфере является метод уходящего теплового излучения. На борту российского метеорологического спутника “Метеор-М” №2 расположен прибор ИКФС-2 (Инфракрасный Фурье-спектрометр-2), измеряющий спектры теплового излучения в диапазоне 660-2000 1/см.

Ученые из Лаборатории исследований озонового слоя и верхней атмосферы СПбГУ предложили методику решения обратной задачи получения вертикального профиля содержания озона, в основе которой лежит физико-математический подход — обобщение метода статистической регуляризации на нелинейные задачи с элементами, улучшающими сходимость решения.

Для увеличения быстродействия обработки данных размерность задачи уменьшалась с помощью метода главных компонент как по отношению к измеренным спектрам, так и по отношению к восстанавливаемым профилям. Оптимальное число главных компонент для профиля озона равно 3.

Для оценок погрешностей и анализа работы представляемой методики интерпретации спектров ИКФС-2 проведены замкнутые численные эксперименты с использованием смоделированных спектров уходящего теплового излучения по известным профилям содержания озона (профили озонозондирования + NCEP GFS). Расчет спектров прямой задачи реализован с помощью модели переноса излучения RTTOV.

Рассмотрено влияние различных факторов решения обратной задачи: использование разной информации о профилях температуры и влажности, вариации температуры поверхности и спектральных каналов в полосе поглощения озона. Выявлено, что разности исходных и восстановленных профилей озона увеличиваются при рассмотрении состояний атмосферы высоких широт.

В планах исследователей: оптимизировать методику, продолжая проведение замкнутых численных экспериментов; рассмотреть влияние ошибки сглаживания; оценить погрешности для отдельных слоев атмосферы; обработать реальные измеренные спектры и провести валидацию на основе сравнений с независимыми данными (MLS, ACE-FTS и др.).

📚 Презентация
👨🏻‍🏫 Видео

Еще один пример использования данных “Метеор-М” №2. Хорошо бы в итоге получить готовый продукт.

📸 Инфракрасный Фурье-спектрометр спутников серии “Метеор-М” №2, изготовленный АО ГНЦ “Центр Келдыша” (источник)

#атмосфера

Спутник ДЗЗ

29 Dec, 11:06


Запущены четыре малых геостационарных спутника MicroGEO

Сегодня выведены на околоземную орбиту четыре геостационарных спутника связи серии MicroGEO, созданные компанией Astranis из Сан-Франциско (шт. Калифорния, США).

Два спутника, NuView Alpha и NuView Bravo, будут служить компании Anuvu из шт. Колорадо (США), обеспечивая связь на самолетах, кораблях и других транспортных средствах. Компания планирует создание группировки из восьми геостационарных спутников. Еще один спутник, Agila, станет специализированным спутником связи для Филиппин. Четвертый спутник, UtilitySat, будет обслуживать нескольких клиентов.

MicroGEO — настоящие малыши, среди геостационарных спутников. Они имеют размеры 1 м х 1 м х 1 м и массу всего около 400 кг. На изготовление одного спутника уходит 18 месяцев, а гарантийный срок его работы на орбите составляет 7 лет.

📸 Инженеры компании Astranis позируют с четырьмя спутниками связи MicroGEO (источник).

#США

Спутник ДЗЗ

29 Dec, 08:27


В Роскосмосе напомнили о планах формирования российской орбитальной группировки

🚀В 2025 году планируется запустить:

* 2 гелиогеофизических спутника "Ионосфера-М",
* 2 спутника интернета вещей "Марафон",
* 4 спутника ДЗЗ "Грифон",
* 2 спутника ДЗЗ "Аист-2Т",
* радиолокационный спутник ДЗЗ "Обзор-Р",
* гидрометеорологический аппарат "Электро-Л" №5.

Запланированы также запуски иностранных космических аппаратов с российских космодромов.

🚀В 2026 году планируется запустить:

* 5 спутников "Марафон",
* 4 высокоэллиптических спутника связи "Экспресс-РВ",
* геостационарные спутники "Экспресс-АМУ4" и "Ямал-501",
* 2 экспериментальных спутника ДЗЗ "Пиксел-ВР".

🚀В 2026–2027 годах планируется запустить:

* 2 модернизированных спутника ДЗЗ "Ресурс-ПМ",
* 2 экспериментальных аппарата ДЗЗ "Беркут-ВР",
* 1 радиолокационный спутник ДЗЗ "Беркут-РСА".

🚀В период 2027–2028 годов предполагается запустить:

* 6 космических аппаратов "Скиф" для широкополосного доступа в интернет,
* 2 гидрометеорологических спутника "Метеор-М".

🚀К 2029–2030 годам планируется вывести на орбиту два радиолокационных спутника ДЗЗ "Кондор-ФКА".

🚀До 2031 года планируется запустить на высокоэллиптическую орбиту 4 гидрометеорологических спутника "Арктика-М".

Источник

#россия

Спутник ДЗЗ

28 Dec, 13:31


Александр Короткевич и Сергей Лемещенко: Что такое баллистика? Часть 2

Во втором видео про историю становления баллистики и орбитальной механики мы проследим за тем, что двигало людьми, собиравшими и систематизировавшими знания о движении небесных тел и положении звёзд. Как астрология стимулировала развитие астрономии? В результате чего и как произошёл прорыв в понимании законов движения планет? Каким образом задачи небесной механики приводили к появлению новых прикладных методов в математике и физике?

📹 VK Видео
📹 RuTube
📹 YouTube

Спутник ДЗЗ

28 Dec, 12:13


Роскосмос впервые начал выкупать данные ДЗЗ у частной компании

Роскосмос и группа компаний (ГК) "Спутникс" заключили первый в России форвардный контракт по выкупу данных дистанционного зондирования Земли (ДЗЗ). Об этом сообщили журналистам в госкорпорации, подводя итоги уходящего года:

"В 2024 году были направлены бюджетные ассигнования в размере до 1,4 млрд рублей для заключения форвардных контрактов с частными компаниями по выкупу получаемых с их космических аппаратов данных ДЗЗ, создаваемых в рамках федерального проекта "Развитие высокотехнологичного направления "Перспективные космические системы и сервисы". Первый контракт на выкуп данных заключен с группой компаний "Спутникс".

В пресс-службе ГК "Спутникс" подтвердили информацию о заключении договора, подчеркнув, что сотрудничество с Роскосмосом остается одной из приоритетных задач "Спутникс": "В рамках контракта были выкуплены данные, которые уже были отгружены в фонд данных. Мы надеемся, что в следующем году сможем подписать форвардный контракт в рамках реализации дорожной карты по направлению "Перспективные космические системы и сервисы".

Источник

#россия

Спутник ДЗЗ

28 Dec, 10:10


Соляные бассейны Салин-де-Жиро

В центре снимка, сделанного прибором OLI-2 спутника Landsat 9 (05.08.2024), видны прямоугольные соляные бассейны Салин-де-Жиро (Salin-de-Giraud), расположенные примерно в 50 километрах к западу от Марселя (Франция). Оранжевый цвет бассейнов связан с солью, а точнее — с фитопланктоном Dunaliella salina, богатым бета-каротином, и с розовой галобактерией, которые успешно выживают в соленой среде. Микроорганизмы окрашивают соляной раствор и питают колонии креветок, которые, в свою очередь, служат пищей розовым фламинго (Phoenicopterus roseus). Соляные бассейны Салин-де-Жиро являются, таким образом, кормовой базой для тысяч перелетных птиц.

#снимки #вода

Спутник ДЗЗ

28 Dec, 08:45


ICEYE получила 65 миллионов долларов дополнительных инвестиций

В декабре компания ICEYE продлила раунд серии Е, о котором она объявила в апреле. Основные инвесторы: финский фонд национального благосостояния Solidium Oy, BlackRock, Seraphim, Plio Limited и Кристо Георгиев (предприниматель в сфере финтеха). Общая сумма средств, привлеченных компанией в этот раунд, составила около 108 миллионов долларов.

Полученные средства будут способствовать дальнейшему расширению радарной группировки ICEYE, а также возможностей использования ее данных в военных и разведывательных целях.

Источник

#финляндия #iceye #SAR #война

Спутник ДЗЗ

28 Dec, 07:53


Круто!

Спутник ДЗЗ

28 Dec, 07:53


В России одним из зимних развлечений было катание на шестах.

На склоне горы укладывали в два ряда круглые длинные шесты, обливали их водой, чтобы на морозе они обледенели. Парни и девушки брались за руки, вставали на "рельсы" друг против друга и скатывались вниз, стараясь не упасть

("Нива", 1887)

Спутник ДЗЗ

27 Dec, 12:10


Анализ рынка данных ДЗЗ от “Цифровой экономики” и “Спутникс”

Автономная некоммерческая организация “Цифровая экономика” совместно с группой компаний “Спутникс” провела исследование рынка данных и сервисов дистанционного зондирования Земли (ДЗЗ) из космоса. Главная цель исследования — определение текущей и потенциальной емкости рынка данных ДЗЗ космоса и сервисов на их основе в России и в мире, ключевых тенденций развития и наиболее перспективных направлений рынка.

”В России объем рынка в 2023 году составил 3,4 млрд рублей, что составляет 0,9 % от глобального объема. В случае реализации перспективных планов развития космической инфраструктуры Роскосмоса и прихода частных инвестиций в отрасль, базовым сценарием развития может стать рост рынка до 50 млрд рублей к 2030 году, со среднегодовым темпом роста в 54 %.” — отметил директор по аналитике АНО “Цифровая экономика” Карен Казарян.

📖 Отчет “Анализ рынка данных и сервисов космического дистанционного зондирования Земли” доступен по 🔗 ссылке.

Ранее, российская компания SR Space подготовила аналитический отчет “Рынок дистанционного зондирования Земли и анализа снимков”, текст которого доступен по 🔗ссылке. Отчет состоит из двух частей: 1) Анализ рынка ДЗЗ в мире и 2) Анализ рынка ДЗЗ в России.

Теперь у желающих появилась возможность сравнить выводы обоих отчетов.

#справка #россия

Спутник ДЗЗ

27 Dec, 10:20


На следующий день после крушения танкеров “Волго-нефть 212” и “Волго-нефть 239” была активирована Международная хартия по космосу и крупным катастрофам🔗Oil spill in Russia — где есть свежие спутниковые снимки, призванные помочь в ликвидации аварии.

В частности, мелькающий в прессе 📸 снимок от 19 декабря, сделан одним из спутников канадской радарной группировки RADARSAT Constellation Mission.

#нефть

Спутник ДЗЗ

27 Dec, 08:38


Оценка состояния посевов по данным спутников серии «Метеор-М»

📖 Панов Д.Ю., Сахарова Е.Ю., Чурсин В.В. Оценка состояния посевов по данным КА серии «Метеор-М»

C развитием группировки космических аппаратов серии «Метеор-М», преимуществами которых является высокая периодичность съемки и пространственное разрешение снимков, приоритетным направлением стало применение данных прибора КМСС в оперативном сельскохозяйственном мониторинге. В работе предложена методика оценки состояния посевов яровой пшеницы по трем градациям: плохое, удовлетворительное, хорошее. Для классификации использовался метод машинного обучения XGBoost.

📚 Презентация
👨🏻‍🏫 Видео

Комплекс многозональной спутниковой съемки (КМСС), стоящий на борту спутников «Метеор-М» №2, обеспечивает пространственное разрешение 60 м и регистрирует отраженное солнечное излучение в трех спектральных каналах: зеленом (0,535–0,575 мкм), красном (0,63–0,68 мкм) и ближнем инфракрасном (0,76–0,9 мкм) в полосе захвата 960 км с периодичностью в сутки.

Данные КМСС имеют гораздо более высокое пространственное разрешение (60 м против 250 м) по сравнению с данными приборов MODIS спутников NASA Terra и Aqua, и могут использоваться для решения задач дистанционной оценки характеристик земной поверхности, оперативного мониторинга и оценки растительного покрова в масштабе региона и страны. До недавнего времени потенциал данных КМСС использовался недостаточно из-за различных технических проблем, связанных с их обработкой. Однако эти проблемы были решены и мы видим появление исследований, направленных на практическое использование данных КМСС-М.

📸 В состав КМСС входят два идентичных многозональных съёмочных устройства МСУ-100ТМ (источник)

#сельхоз #россия

Спутник ДЗЗ

26 Dec, 12:37


K2 Space заключила контракт на 30 млн долларов по программе “Стратегическая финансовая инициатива”

О контракте мы уже упоминали. Здесь хотелось бы сделать акцент на программе поддержки частных космических разработок от американских военных. Стремительность K2 Space также вызывает интерес.

Компания K2 Space, производитель спутников из Калифорнии (США), заключила контракт с Космическими силами США на 30 миллионов долларов на запуск своего первого спутника Mega Class.

Сделка является частью программы “Стратегическая финансовая инициатива” (Strategic Financing Initiative, STRATFI), в рамках которой государственные средства и частные инвестиции используются для поддержки передовых космических технологий. Благодаря вкладу организации SpaceWERX, Исследовательской лаборатории ВВС США и Программы космических испытаний (Space Test Program) Министерства обороны США, общая стоимость сделки составила 60 миллионов долларов.

Программа STRAFTI обнародована в августе нынешнего года. Список компаний, получивших поддержку, можно посмотреть 🔗 здесь.

K2 Space основана всего два года назад. Своей спутниковой платформой Mega Class компания стремится нарушить традиционное соотношение между массой и стоимостью спутника, предлагая платформы по цене около 15 миллионов долларов, что обычно характерно для небольших систем.

Платформа предназначена для работы на низких, средних и высоких околоземных орбитах и нацелена на применение в сфере национальной безопасности, например, в рамках программы Resilient GPS (Устойчивая GPS).

Контракт STRATFI предусматривает разработку, интеграцию и запуск спутника с несколькими экспериментальными полезными нагрузками для программы космических испытаний Министерства обороны США. Спутник, получивший название Gravitas, должен быть запущен в феврале 2026 года на борту ракеты-носителя SpaceX на низкую околоземную орбиту. Там в течение 12 недель будут проводиться эксперименты с полезной нагрузкой в интересах национальной безопасности США. После этого, электрическая двигательная установка (разработка K2) доставит спутник на высоту свыше 19 000 км, для дальнейших испытаний, включая мониторинг космической погоды.

Контракт по программе STRATFI свидетельствует о растущем интересе военных к технологии более крупным коммерческим спутниковым платформам, сказал Кунджур. Эти платформы могут использоваться в различных оборонных целях, от контроля космического пространства до систем связи и навигации. Благодаря миссии Gravitas, K2 Space может стать одной из первых коммерческих компаний, аппараты которой будут работать на средней околоземной орбите.

Источник

#война

Спутник ДЗЗ

26 Dec, 10:57


Ежегодный доклад Пентагона о военной мощи Китая

18 декабря Министерство обороны США выпустило ежегодный отчет “Military and Security Developments Involving the People's Republic of China” (🔗 ссылка).

Оказалось, что Народно-освободительная армия находится в авангарде усилий по модернизации КНР и наращивает свой космический потенциал. Слово “satellite” встречается в отчете свыше ста раз. В первую очередь, речь идет о спутниках навигации и связи, но не забыты и разведывательные спутники, противоспутниковое оружие, а также космический робот-манипулятор для захвата спутников.

#война #США #китай

Спутник ДЗЗ

26 Dec, 08:20


Компании Airbus U.S. Space and Defense и Aerostar успешно завершили совместный стратосферный испытательный полет в рамках соглашения о совместных исследованиях и разработках (CRADA, Cooperative Research and Development Agreement).

В испытании участвовали стратостат Thunderhead Stratospheric Balloon компании Aerostar, оснащенный терминалами спутниковой связи, адаптированными для работы в стратосфере, и высотная платформу Zephyr компании Airbus.

Полет начался 8 ноября нынешнего года и завершился 6 декабря. Испытание подтвердило надежность работы систем связи в условиях длительного воздействия окружающей среды. Стратосферные платформы продемонстрировали возможности сбора и передачи оперативной информации в режиме, близком к реальному времени.

Источник

1️⃣ Стратостат Thunderhead Stratospheric Balloon 2️⃣ Высотная платформа Zephyr

#псевдоспутник #война

Спутник ДЗЗ

26 Dec, 05:17


Вместе с коллегами из «Ракурса» выпустили «под елочку» новую версию PHOTOMOD Radar 2.3.1

Главная новация релиза – добавление инструментов разметки и обучения в модуль нейросетевой обработки данных радиолокационной спутниковой съемки

🛰 Если использованием нейросеток в «оптике» уже никого не удивишь, то в «радиолокации» в силу специфики и меньшего распространения таких данных нейросетевой метод еще не стал мейнстримом

🤖 Теперь пользователи смогут сами:

▸ размечать любые целевые объекты на радиолокационных снимках,
▸ формировать из них обучающие и тестовые выборки и
▸ обучать нейросети для обнаружения этих объектов на новых изображениях

🏷️ Для готовых данных разметки радарных снимков, сформированных в Roboflow и других сервисах онлайн-маркирования изображений, поддержан импорт аннотаций в формате COCO-json

💻 Базовое условие быстродействия обучения – наличие мощного графического процессора, построенного на архитектуре CUDA c 4+ГБ видеопамяти: NVidia Tesla A100 или аналогичного

🏋🏻 Для адаптации и быстрого старта новичков подготовлены файлы с весами нейронных сетей, предобученными на данных небольшой выборки. С их помощью можно обнаруживать корабли, самолеты и нефтяные вышки на снимках со спутников TerraSAR-X, Gaofen-3, Кондор-ФКА, Spacety, Umbra, Sentinel

📕 Подробнее о детектировании объектов на радиолокационных снимках с помощью нейросетей

🔗 Подробнее о новом релизе PHOTOMOD Radar

Сохраняем в «Избранное» и пересылаем в Новом году тем, кто в теме радарного ДЗЗ и нейронных сетей

Спутник ДЗЗ

25 Dec, 16:02


Спутник Sentinel-2C введен в эксплуатацию

Симонетта Чели (Simonetta Cheli), директор программ ESA по наблюдению Земли и глава ESRIN (ESA Centre for Earth Observation), сообщила, что спутник Sentinel-2C введен в эксплуатацию.

Данные Sentinel-2C публикуются в Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu), начиная с 13 декабря 2024 года. Пользователи могут получить доступ к данным через Copernicus Browser (https://browser.dataspace.copernicus.eu/), 📸 применив во время поиска фильтр Satellite Platform, установленный на S2C.

#sentinel2 #данные

Спутник ДЗЗ

25 Dec, 13:01


Introduction to Environmental Data Science

Книга Introduction to Environmental Data Science (https://bookdown.org/igisc/EnvDataSci/) Джерри Дэвиса (Jerry Davis) посвящена анализу пространственных данных, связанных с исследованиями окружающей среды, на языке программирования R.

В книге есть краткое введение в R, описана работа с векторными и растровыми данными, моделирование, анализ спутниковых снимков и временных рядов.

Environmental Data Science book (https://edsbook.org/welcome) — аналогичный ресурс на Python.

Спасибо коллегам за наводку!

#R #python

Спутник ДЗЗ

25 Dec, 12:30


Best Practices for Data Visualisation

Andreas Krause, Brian Tarran и Nicola Rennie написали небольшое пособие по методам визуализации данных, в первую очередь для авторов публикаций Королевского статистического общества (UK). Тем не менее, информация и советы в нем имеют широкую актуальность и полезны для любой задачи визуализации данных.

Их советы касаются принципов и элементов визуализаций, выбора типов визуализаций, стилизации для публикаций и многого другого.

Спутник ДЗЗ

25 Dec, 10:05


Запущен спутник “Ресурс-П” №5

Сегодня выведен на орбиту российский космический аппарат дистанционного зондирования Земли 1️⃣🛰 “Ресурс-П” №5. В настоящее время на орбите уже работает 🛰 “Ресурс-П” №4, запущенный 31 марта 2024 года.

Аппаратура спутников “Ресурс-П” позволяет вести высокодетальную и обзорную съемку в видимом и ближнем инфракрасном диапазонах электромагнитного спектра, осуществлять гиперспектральную съемку и стереосъемку маршрутов.

2️⃣ Тактико-технические характеристики целевой аппаратуры космических аппаратов “Ресурс-П” (разрешение на местности и ширина полосы захвата указаны в надире для высоты орбиты 475 км).

📖 Руководство пользователя данными дистанционного зондирования Земли, получаемыми с космической системы "Ресурс-П" [ссылка]

Коллега Овчинников опубликовал познавательную презентацию, посвященную запуску “Ресурс-П” №5, где есть слайд с разработчиками 3️⃣.

Поздравляем всех причастных к разработке и запуску спутника!

Спутник ДЗЗ

24 Dec, 16:19


#ифа_лаборатории

💥Пыльные бури являются одним из важных опасных природных явлений, которые влияют на социально–экономическую жизнь и здоровье человека, а также на многие атмосферные процессы и экосистемы. Частицы пыли могут преодолевать по ветру расстояния до нескольких тысяч километров. В этой связи возникает важная задача определения источников такого пылевого аэрозоля.

Сотрудниками Сектора дистанционного исследования состава атмосферы (СДИСА) в ходе выполнения работ по российско-иранскому проекту РФФИ в ИФА РАН была разработана методика решения этой задачи.
🔘Методика основана на совместном анализе данных измерений характеристик аэрозоля над исследуемым регионом, а также информацией об обратных траекториях воздушных масс, прибывших в исследуемый регион из пограничного слоя с удалённых территорий. Эта методика была опробована на примере региона оз. Урмия (Иран). В качестве данных о характеристиках аэрозоля использованы результаты спутникового зондирования (Aqua-Terra MODIS) аэрозольной оптической толщины на длине волны 550 нм (АОТ550) и параметра Ангстрема. Для выбранного региона проведена оценка вклада регионального пограничного слоя в AOТ550 при характерных для пылевых частиц значениях параметра Ангстрема (< 1.0) и построена его сезонная изменчивость по данным за 2009-2022 гг. (Рис. 1). Цветом показана вероятность переноса воздушных масс в исследуемый регион. Регион оз. Урмия отмечен на рисунке тёмно-серым прямоугольником, Аральское море показано в границах 1960-ых гг.

✔️ Результаты показали, что в марте-мае на бассейн оз. Урмии влияние оказывает дальний перенос пыли из атмосферного пограничного слоя (АПС) над Сирийской и Аравийской пустынями. ✔️ В июне, помимо этих источников, пылевая аэрозольная нагрузка также связана с Арало-Каспийским аридным регионом, включая пустыню Аралкум. ✔️В июле-октябре продолжается дальний перенос пыли из атмосферного погранслоя с пустынь Ближнего Востока, а также стран Арало-Каспийского региона. Также, летом часть пылевой нагрузки над Урмийской котловиной обусловлена выбросами из местных источников, включая сухое дно самого озера.


🧾 Подробнее с результатами можно ознакомиться в недавно опубликованной статье Abadi et al.,2024.

Спутник ДЗЗ

24 Dec, 12:21


Прогнозирование урожайности яровых на юге Западной Сибири по данным спутниковых измерений солнечно-индуцированной флуоресценции

📖 Карамзина А.Е., Лагутин А.А., Мордвин Е.Ю. Прогнозирование урожайности яровых зерновых и зернобобовых культур по данным спутниковых наблюдений на юге Западной Сибири

В работе развивается подход к прогнозированию урожайности яровых культур с упреждением в 2–3 месяца, опирающийся на данные об интенсивности индуцированного солнечным светом флуоресцентного излучения.

Во время световой фазы фотосинтеза молекулы хлорофилла в растениях поглощают энергию солнечного света, часть которой излучается в диапазоне длин волн 600–800 нм. Это излучение называется солнечно-индуцированной флуоресценцией (SIF, Solar-induced fluorescence).

В основе предлагаемого метода лежит линейная зависимость между SIF, характеризующей интенсивность фотосинтеза, и первичной валовой продукцией (GPP, gross primary production) региона, являющейся показателем продуктивности “полезной” биомассы, что дает возможность оценить урожайность сельскохозяйственных культур.

В работе использованы измерения потоков SIF, выполненные прибором TROPOMI спутника Sentinel-5P, информация о типе подстилающей поверхности (продукт MCD12Q1 прибора MODIS спутников Terra и Aqua), а также размер посевных площадей по данным Росстата.

• Анализ полученных результатов для периода 2020–2021 гг. показал существование устойчивой связи между максимумом в спутниковых наблюдениях SIF и урожайностью зерновых и зернобобовых культур на территории юга Западной Сибири.
• Предложенный алгоритм позволил сделать оценку урожайности с доверительным интервалом ~7% во второй половине июля, до начала уборочной кампании
• Полученные оценки урожайности для периода 2022–2023 гг. согласуются с опубликованными данными Росстата.
• Представлены оценки урожайности для 2024 г.


📚 Презентация
👩‍🏫 Видео


Данные SIF обеспечивают хорошую заблаговременность прогнозов урожайности, но сами являются проблемными: их мало, они имеют низкое разрешение и зачастую запаздывают. Первый спутник, специально предназначенный для измерений SIF, планируется запустить в следующем году (после подготовки, длящейся около 20 лет).

Интересно, существуют ли отечественные организации, измеряющие SIF с воздуха? Создаются ли собственные приборы для измерения SIF?

#SIF #сельхоз

Спутник ДЗЗ

24 Dec, 10:21


NASA выбрало разработчика магнитометров для проекта межпланетной метеорологической станции

NASA заключило контракт с Юго-Западным исследовательским институтом (Southwest Research Institute, SwRI) в Сан-Антонио (шт. Техас, США) на разработку приборов для мониторинга космической погоды в рамках программы NOAA Space Weather Next. Контракт на сумму 26,1 миллиона долларов включает в себя разработку двух магнитометров для будущей миссии Space Weather Follow On Lagrange 1 (SWFO-L1).

Межпланетная станция SWFO-L1 будет работать в точке Лагранжа L1 между Солнцем и Землей, что позволит проводить измерения возмущений солнечного ветра до того, как они достигнут Земли. Магнитометры будут играть важнейшую роль в измерении межпланетного магнитного поля, переносимого солнечным ветром. Эти данные крайне важны для прогнозирования космической погоды.

Срок службы обсерватории SWFO-L1 составит 5 лет, а расходных материалов на борту хватит на 10 лет. Изготовлением космического аппарата займется BAE Systems.

Сроки реализации контракта SwRI охватывают период с декабря 2024 года по январь 2034 года. Работы будут проводиться на объекте SwRI в Сан-Антонио, в Центре космических полетов NASA имени Годдарда и в Космическом центре имени Кеннеди.

Источник

📸 Художественное изображение межпланетной станции SWFO-L1

#солнце #погода

Спутник ДЗЗ

24 Dec, 07:39


Коллеги пол года назад писали об американской компании K2 Space, разрабатывающей спутниковую платформу Mega Class, предназначенную для размещения полезной нагрузки массой до 1000 кг и производства энергии мощностью до 20 кВт.

Via Satellite сообщает, что K2 Space выиграла контракт Космических сил США на $60 млн на создание первого такого спутника. Запуск запланирован на февраль 2026 года, название миссии - «Gravitas». В рамках Gravitas будут осуществлены "расширенные операции на низкой орбите" и подъем КА на среднюю орбиту.

«Этой миссии повезло, она пользуется поддержкой различных подразделений Космических сил США; все заинтересованные стороны признали, что платформа K2 уникальна своей способностью обеспечивать возможности, необходимые для их будущих миссий», — отметил Каран Кунджюр, генеральный директор K2 Space.

#K2

Спутник ДЗЗ

23 Dec, 15:40


🔔 Открыта регистрация на цикл онлайн-лекций «Мир болотных экосистем: от основ до инноваций».

📆Цикл лекций пройдет с 27 января по 30 мая 2025 г. В программе — 19 научно-популярных лекций, которые проведут ученые консорциума «РИТМ углерода» и партнеры. Они поделятся современными научными знаниями об особенностях строения и функционирования болотных экосистем. Программа лектория доступна на сайте.

✍️ Принять участие в цикле онлайн-лекций могут все желающие. Для этого необходимо зарегистрироваться, заполнив форму.

🍃 Лекторий будет полезен для специалистов в области охраны окружающей среды и природопользования, представителей бизнеса и госорганизаций, чья работа связана с вопросами экологии, устойчивого развития, климатических изменений; любителей природы и активистов экологических движений, научных сотрудников и исследователей, педагогов, студентов и аспирантов экологических и биологических направлений.

🔔Детям, молодежи и взрослым людям, чья деятельность не связана с естественными науками, также будет интересно и понятно. Регистрируйтесь.

Регистрация будет открыта в течение всего лектория, но ссылка на подключение придет на почту только зарегистрированным участникам за 1-2 дня до начала онлайн-лекции. Записи лекций будут предоставлены на ограниченный срок только тем, кто предварительно зарегистрировался.

🎯 Цель онлайн-лектория — обогащение знаний и повышение осведомленности участников о болотных экосистемах, их эколого-биологических особенностях, роли в глобальных процессах и жизни коренных малочисленных народов, инновационных методах их исследования и сохранения, а также развитие навыков, которые помогут в продвижении и реализации практик устойчивого управления и защиты этих уникальных природных объектов.

📄 В программе лектория:
• Введение в болотоведение — подходы в определении болота, понятие болотный массив, типы болот, растительность болот и ее классификация;
• Методы исследований — традиционные методы и современные технологии изучения структуры и динамики болотных экосистем;
• Растения и животные — изучение флоры и животного мира: орнитофауны, млекопитающих, рептилий и амфибий болот;
• Гидрология и почвы — водный режим и почвенные характеристики разных типов болот;
• Углеродный цикл и климат — запасы и потоки углерода, двоякая роль болот в глобальном круговороте углерода как поглотителя углекислого газа, но источника метана;
• Болота в культуре и экологии коренных малочисленных народов — углубленное понимание взаимосвязи коренных малочисленных народов с болотами и актуализация необходимости их защиты;
• Инновационные подходы — использование беспилотных летательных аппаратов (БВС) и математическое моделирование в исследовании болотных экосистем;
• Практические аспекты — вторичное обводнение осушенных болот, конструирование водно-болотных угодий, стратегии сохранения биологического разнообразия и потенциал болот в поглощении парниковых газов.

🔗Подробная программа лектория доступна на сайте.

🤗Не упустите шанс расширить свои знания и стать частью сообщества, стремящегося к устойчивому будущему и сохранению уникальных болотных экосистем!

😀 Организатор цикла лекций: научный консорциум «РИТМ углерода».

📇 Идеолог и модератор цикла лекций: Юлия Куприянова, научный сотрудник лаборатории экосистемно-атмосферных связей лесоболотных комплексов Югорского государственного университета, координатор рабочей группы по исследованию болотных экосистем консорциума «РИТМ углерода».

#мероприятие_РИТМуглерода #ЮлияКуприянова #мирболотныхэкосистем

Спутник ДЗЗ

23 Dec, 12:25


Flexth: открытый инструмент для оценки глубины и площади затопления

Flexth — ПО с открытым исходным кодом, разработанное Объединенным исследовательским центром Европейской комиссии (Joint Research Centre, JRC) для оценки глубины затопления и улучшения картографирования наводнений по спутниковым данным за счет учета топографии местности.

🖥 Репозиторий кода
📖 Статья с описанием: Betterle, A. and Salamon, P. Water depth estimate and flood extent enhancement for satellite-based inundation maps, Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024, 2024.

#софт #наводнение

Спутник ДЗЗ

23 Dec, 08:37


Ученые обнаружили исчезнувший рукав Нила, по которому могли доставляться материалы для строительства египетских пирамид

Исследовательская группа из Университета Северной Каролины в Уилмингтоне (США) обнаружила, что пирамиды, по-видимому, были построены вдоль давно исчезнувшего рукава реки Нил, который сейчас скрыт под пустыней и сельскохозяйственными угодьями.

Гипотеза о том, что древние египтяне транспортировали строительные материалы для пирамид по рекам была высказана много лет назад. Проблема в том, что подходящей реки вблизи пирамид не было.

Для поисков древнего русла использовались снимки космического радара TanDEM-X, дополненные наземными измерениями. В результате был найден засыпанный песками рукав Нила, который исследователи назвали Ахрамат (Ahramat). Длина рукава оценивается в 64 км, глубина рукава составляла от 2 до 8 м, ширина — 200–700 м. Ахрамат проходил у подножия плато Западной пустыни, где расположено большинство пирамид. Многие пирамиды, относящиеся к Древнему и Среднему царствам, имеют дороги, ведущие к этому рукаву.

1️⃣ Использование радара и Topographic Position Index (TPI)* для картографирования каналов (заливов), соединенных с рукавом Ахрамат (а) особенности отражения радарного сигнала в зависимости от шероховатости поверхности, b) отражение сигнала засыпанным руслом реки).
2️⃣ Реконструкция рукава Ахрамат. Дороги, ведущие из пирамид Гизы в сторону рукава, заканчивались храмами, которые могли служить речными пристанями.

📖 Ghoneim, E., Ralph, T.J., Onstine, S. et al. The Egyptian pyramid chain was built along the now abandoned Ahramat Nile Branch. Commun Earth Environ, 5, 233 (2024). https://doi.org/10.1038/s43247-024-01379-7

*TPI — метод классификации рельефа, при котором высота каждой точки оценивается по отношению к ее окрестности. Если точка находится выше, чем точки из ее окрестности, то TPI будет положительным (например, на хребтах и вершинах холмов). Если же точка лежит ниже окружающих ее точек, то TPI будет отрицательным (в долинах).

#археология #SAR

Спутник ДЗЗ

22 Dec, 13:47


💫 Собрана ракета для запуска «Ресурса-П» № 5
 
🗓 Вывоз — 23 декабря
🗓 Старт носителя «Союз-2.1б» со спутником «Ресурс-П» № 5 — 25 декабря в 10:45 мск.

Фото: Иван Тимошенко

Спутник ДЗЗ

22 Dec, 12:04


Мониторинг нефтяного загрязнения, возникшего в результате аварий танкеров “Волго-нефть 212” и “Волго-нефть 239”

15 декабря в Керченском проливе произошло крушение танкеров “Волго-нефть 212” и “Волго-нефть 239”. Первый танкер затонул, а кормовая часть судна “Волго-нефть 239” села на мель в 82 м от берега в районе п. Волна.

Количество нефтепродуктов на судне “Волго-нефть 212” по данным МЧС составляла 4251 тонн мазута, а на судне “Волго-нефть 239” — 4300 тонн мазута. Значительная часть мазута вытекла в море.

Через некоторое время в сети появились радарные снимки Sentinel-1, сделанные 18 и 19 декабря. На последнем из них хорошо видно нефтяное пятно, вытянувшееся вдоль побережья по направлению к Анапе и, вероятно, вызванное утечкой мазута с танкера “Волго-нефть 239”. Продолжается утечка мазута с затонувшего танкера “Волго-нефть 212”.

Заметим, что при высоких скоростях ветра (свыше 9 м/с) тонкие нефтяные пленки на морской поверхности перестают быть видны на радарных снимках. Остаются только толстые пленки нефти или тяжелых нефтепродуктов, вроде мазута. 18 и 19 декабря скорость ветра у поверхности превышала 9 м/с, так что оценить площадь загрязнения по данным космических радаров в штормовую погоду весьма затруднительно.

К сожалению, открытых данных ДЗЗ из космоса недостаточно для мониторинга данной аварии. Оптические снимки почти недоступны из-за облачности. Радарные, кроме сказанного выше, имеют низкую периодичность. В основном, наблюдение ведется наземными (водными) и воздушными средствами.

Следить за оперативной информацией МЧС можно на 🔗 сайте ГУ МЧС России по Краснодарскому краю.

Помимо сотрудников МЧС, на земле ликвидацией последствий аварии занимаются десятки добровольцев. Как это происходит, можно увидеть 🔗 здесь.

📖 Для интересующихся вопросами мониторинга нефтяных загрязнений рекомендуем обзорную статью А. Ю. Иванова.

🗺 В заключение, вот небольшой скрипт GEE, где есть оба радарных снимка Sentinel-1, оптический снимок Sentinel-2, результаты прогноза скорости ветра, а также расположение танкеров (“Волго-нефть 239” хорошо заметен у берега, а координаты “Волго-нефть 212” взяты из сообщения МЧС). Можете все сами посмотреть.

📸 Кормовая часть судна “Волго-нефть 239” у побережья в районе поселка Волна (источник)

#нефть #GEE #SAR

Спутник ДЗЗ

22 Dec, 10:45


Спутники ДЗЗ, запущенные в составе миссии SpaceX Bandwagon-2

21 декабря 2024 года в 11:34 всемирного времени с площадки SLC-4E Базы Космических сил США “Ванденберг” (штат Калифорния, США) в рамках миссии Bandwagon-2 осуществлен пуск ракеты-носителя Falcon-9FT Block-5 (F9-413) компании SpaceX с 30 малыми космическими аппаратами из 8 стран.

Космические аппараты успешно выведены на околоземную орбиту. Это вторая миссия SpaceX по выводу космических аппаратов на низкие околоземные орбиты со средним наклонением (45°). Первая была выполнена в апреле нынешнего года.

Крупнейшей полезной нагрузкой миссии стал третий южнокорейский разведывательный радарный спутник 🛰 “425 Project”. Первый такой спутник был запущен ракетой Falcon 9 в декабре прошлого года, второй — миссией Bandwagon-1 в апреле нынешнего. Следующий запуск подобных спутников ожидается в миссии Bandwagon-3.

Сообщается, что в декабре 2018 года Thales Alenia Space подписала два контракта с компаниями Korea Aerospace Industries и Hansha Systems Corporation на разработку радарных спутников высокого разрешения для Корейского агентства оборонного развития. Thales Alenia поставляет радар и элементы системы наведения космических аппаратов. Радар использует развертываемую 5-метровую антенну.

В транспортно-пусковом контейнере Exolaunch разместились 22 спутника — 15 CubeSat’ов и 7 более крупных аппаратов. Среди них:

🛰🛰 Радарные спутники ICEYE X47 и X49, массой около 90 кг каждый.
🛰🛰 🛰 Три спутника радиочастотного наблюдения компании Hawkeye 360 — 11A, 11B и 11C. Каждый спутник массой около 30 кг.
🛰 Космический аппарат LizzieSat-2 компании Sidus Space, масса которого составляет около 100 кг. Среди полезной нагрузки — камеры, система для граничных вычислений и камера Holmes-004, которая будет использоваться для наблюдения за другими объектами на орбите.

Среди другой полезной нагрузки к ДЗЗ относятся:

🛰🛰Спутники Tomorrow-S3 и S4 компании Tomorrow.io — пара CubeSat’ов 6U с 📸 микроволновыми радиометрами для сбора метеорологических данных.
🛰 Спутник XCUBE-1, CubeSat 6U от Xplore, с гиперспектральной камерой.

Среди полезной нагрузки, не относящейся к ДЗЗ, нам показались интересными:

🛰 Спутник Jackal 3/TAANSAAFL-002 компании True Anomaly должен продемонстрировать возможности сближения на орбите, а также внеземной съемки. Спутник имеет массу 275 кг. Первая пара спутников True Anomaly, запущенная в марте миссией Transporter 10, вышла из строя вскоре после развертывания.

🛰 Спутник SC1 компании GITAI — CubeSat 16U, предназначенный для отработки новой спутниковой платформы. Кроме того, SC1 должен развернуть на орбите тросовую систему и наблюдать за ней с помощью камер, лидара и лазерного дальномера. Общая масса SC1 — около 20 кг, масса второго концевого тела — около 1 кг. GITAI создает автономных сервисных космических роботов. Компания основана в Японии, а в конце 2023 года переехала в США.

На 🛰 спутнике Flight-2 компании Think Orbital предполагается провести эксперимент по электронно-лучевой сварке, резке и рентгеновскому контролю за состоянием металла. Аппарат массой 45 кг передаст полученные данные на Землю и отключится примерно через сутки после запуска.

Большая часть полезной нагрузки выведена на орбиту высотой 510 км, а южнокорейский разведспутник — на высоту 570 км.

#SAR #SIGINT #микроволны #гиперспектр #оптика

Спутник ДЗЗ

22 Dec, 08:45


Запущен японский радарный спутник StriX-2

21 декабря 2024 года в 14:17 всемирного времени с площадки LC-1B космодрома Махиа в Новой Зеландии в рамках 📸 миссии “Owl The Way Up” осуществлен пуск ракеты-носителя Electron (F58) компании Rocket Lab с радарным спутником StriX-2 японской компании Synspective.

Космический аппарат успешно выведен на околоземную орбиту.

StriX-2 — шестой спутник Synspective, запущенный ракетами Rocket Lab. Сообщается, что это последний радарный спутник Synspective второго поколения. Далее будут запускаться спутники третьего поколения, которые, как утверждается, способны делать большее количество снимков — до 40 в сутки.

#SAR #япония

Спутник ДЗЗ

21 Dec, 15:38


Александр Короткевич и Сергей Лемещенко: Что такое баллистика? Часть I

Смотрите на каналах "TacticMedia":
Rutube | Youtube | ВКонтакте | Дзен

Этот рассказ открывает серию видео по истории становления баллистики и орбитальной механики – наук, которые позволили человечеству выйти в космос и начать освоение космического пространства. В нем мы постараемся ответить на следующие вопросы: Что общего между стрельбой из пушки и космическим полётом? Что такое баллистика и откуда она взялась? Почему тысячу лет ракеты были в тени больших пушек? Откуда взялась первая баллистическая ракета и как с неё начались космические программы СССР и США?

Поддержи наши проекты
Ранний доступ к нашим новостям и видео

Спутник ДЗЗ

21 Dec, 12:18


Метод квантовой призрачной визуализации позволяет изучать растения, не повреждая их

Исследователи получили четкие изображения растений сорго при освещении на порядок уступающем свету звезд по интенсивности. Новый метод позволяет изучать растения не повреждая их.

Обычно для детального изучения процессов в растении их приходится срезать, вводить внутрь специальные «метки» или подвергать вредным уровням светового излучения, которые вызывают стресс или повреждают ткани растения. Метки и красители позволяют исследователям наблюдать детали растения и его состояние на микроуровне, но могут нарушать естественные протекающие внутри растений процессы.

Метод квантовой призрачной визуализации (Quantum Ghost Imaging, QGI) позволяет получать изображения при экстремально низких уровнях освещения. Более того, он улучшает качество изображений в диапазонах длин волн, где традиционные камеры работают неэффективно и не могут дать четкой картинки.

Метод использует эффект спонтанного параметрического двойного рассеяния (SPDC) для создания пары связанных фотонов. Один из этих фотонов, называемый сигналом, используется для формирования изображения, а другой, называемый идлером, используется для измерения и корреляции с сигналом. У фотонов разные длины волн, у сигнального — в инфракрасном диапазоне, у идлера — в видимом.

Идлер проходит через растение, взаимодействует с водой в нем и попадает на свой детектор, сигнальный фотон — в другой, свой. После сопоставления информации от двух детекторов исследователи могут делать выводы об объекте, на который было направлено излучение, и строить изображение.

Ученые поместили растения сорго, кинзу и папоротник в световой поток интенсивностью три аттоватт* на квадратный сантиметр. После этого с помощью инфракрасного света они детектировали специфические видимые в этом диапазоне химические вещества и видимый свет.

В QGI образец исследуется на одной длине волны излучения, а изображение формируют за счет коррелированных фотонов другой длины волны. Разделение спектра устраняет необходимость в высокочувствительных детекторах в ближнем инфракрасном диапазоне, снижая требуемую интенсивность освещения. Чтобы уловить прошедший через растение свет, оказалось достаточно детектора одиночных фотонов.

Исследователи смогли добиться квантовой призрачной визуализации с беспрецедентной чувствительностью и контрастностью. Растения, участвующие в экспериментах, не получили повреждений.

Используя бесконтактную инфракрасную визуализацию, исследователи могут собирать важную информацию о ключевых процессах в живом растении, напрямую наблюдать процессы фотосинтеза и колебания содержания воды.

Применение QGI расширяет возможности биовизуализации при экстремально низкой освещенности. Это важно для работы с чувствительными к свету образцами — некоторые ткани растений деградируют под определенным излучением.

Источник

*10 в минус 18-й степени Ватт.

Пара статей, посвященных призрачной визуализации:

📖 Padgett M.J., Boyd R.W. 2017. An introduction to ghost imaging: quantum and classical. Phil. Trans. R. Soc. A 375:20160233. http://dx.doi.org/10.1098/rsta.2016.0233
🖥 Трунин Д. Физики впервые получили изображение с помощью «призрачных» электронов

Спутник ДЗЗ

21 Dec, 10:15


Квантовый чип Willow

Корпорация Google представила публике новую разработку — квантовый чип Willow.

Обычные компьютеры оперирует битами — базовыми единицами информации, которые принимают одно из двух значений: 0 или 1. Квантовые компьютеры используют в своей работе не биты, а кубиты — квантовые аналоги битов. В отличие от классических битов, они могут находиться в состоянии суперпозиции, то есть одновременно представлять 0 и 1 в определённых пропорциях. Это свойство (квантовая суперпозиция) позволяет квантовому компьютеру обрабатывать множество комбинаций одновременно, значительно ускоряя выполнение некоторых типов задач.

Другое важное свойство кубитов — квантовая запутанность. Запутанные кубиты остаются взаимосвязанными, даже если находятся на большом расстоянии друг от друга, что создает корреляции между их состояниями. Это свойство открывает новые возможности для оптимизации вычислений.

Тем не менее у квантовых вычислений есть проблема — нестабильность кубитов. Они часто теряют информацию из-за взаимодействия с окружающей средой, что приводит к ошибкам. При этом увеличение числа кубитов приводило к нарастанию числа ошибок. Поэтому до сих пор квантовые компьютеры были слишком малы, чтобы их можно было использовать в коммерческих и научных приложениях.

В статье, опубликованной 9 декабря в Nature, разработчики из Google сообщили, что создали метод, при котором точность вычислений квантового компьютера будет возрастать по мере увеличения числа кубитов. По словам разработчиков, это решает основную задачу, над которой ученые бились около 30 лет, а именно задачу квантовой коррекции ошибок.

Как утверждают авторы, эксперименты с Willow показали, что чип, имеющий 105 кубитов, по скорости вычислений значительно опережает современные суперкомпьютеры. На решение задачи, которую чип просчитал за несколько минут, суперкомпьютеру Frontier потребовалось бы 10 септиллионов лет, что превосходит возраст Вселенной.

📸 Криостат в центре квантовых вычислений Google

Источник

Спутник ДЗЗ

21 Dec, 08:00


Квантовый радар на основе частотных гребенок (qCOMBPASS)

Ученые предложили метод дистанционного квантового зондирования, который потенциально может работать на расстоянии в сотни километров. Новая технология использует эффект, позволяющий свету содержать информацию об объекте, с которым он никогда не взаимодействовал напрямую.

Обычные методы дистанционного зондирования основаны на отражении света от объекта. Квантовые методы предлагают отправить одну из связанных пар фотонов к объекту, а после сравнить ее с сохраненной “парой-близнецом”. Однако такие системы работают на лишь малых расстояниях из-за ограниченной дальности одиночных фотонов и трудностей с сохранением их квантовой когерентности.

Для преодоления этих ограничений исследователи предложили заменить одиночные фотоны связанными мультифотонными состояниями. Кроме того, они используют эффект Зоу-Ван-Манделя (Zou-Wang-Mandel effect), при котором изображение объекта формируется с помощью фотонов, никогда с ним не взаимодействовавших.

Ключевым элементом нового метода (qCOMBPASS) являются квантовые частотные гребенки (quantum frequency combs) — серии строго синхронизированных оптических импульсов с узким и регулярным спектром. Они обеспечивают высокую когерентность и исключают необходимость хранения фотонов. Возвращающийся импульс одной гребенки ассоциируется с импульсами другой, что позволяет создать изображение объекта, не прибегая к сложным системам хранения данных.

Предлагаемая схема напоминает квантовый радар на основе запутанных пар частотных гребенок, который использует тождество путей для обнаружения удаленной цели и определения расстояния до нее. Исследователи ожидают, что его применение позволит достичь расстояний в сотни километров и точности, недоступной классическим датчикам.

Новый метод может найти множество применений в области дистанционного зондирования, визуализации, метрологии и связи. В перспективе, его можно использовать для: обнаружения и определения дальности до объектов с низкой отражательной способностью; измерения малых перемещений удаленной цели с точностью, превышающей стандартный квантовый предел; дистанционной гиперспектральной квантовой визуализации, скрытого наблюдения из космоса с низкой вероятностью обнаружения (обнаружить, не будучи обнаруженным самому); интерферометрии со сверхдлинной базой; квантового доплеровского зондирования; квантовой синхронизации часов и создания сети распределенных квантовых датчиков.

Источник

Спутник ДЗЗ

08 Dec, 14:54


В 2025 году доступ к данным ДЗЗ из федерального фонда будет безвозмездным

Данные дистанционного зондирования Земли (ДЗЗ), содержащиеся в федеральном фонде данных ДЗЗ, будут предоставляться бесплатно органам власти, госкорпорациям, а также компаниям и частным лицам, исполняющим государственные контракты в период с 1 января по 31 декабря 2025 года. Соответствующее постановление правительства России опубликовано на официальном портале правовой информации.

Действие постановления распространяется на данные ДЗЗ, копии данных ДЗЗ, а также на продукты, созданные на их основе.

#россия

Спутник ДЗЗ

08 Dec, 10:40


Открытые данные дистанционного зондирования для выявления археологических объектов

С помощью современных спутниковых данных можно находить признаки наличия скрытых сооружений или поселений, которые проявляются в изменении характера растительных условий и даже ландшафта, что позволяет значительно сузить радиус поиска археологических объектов. В работе (Данилов и др., 2024) рассмотрены возможности использования открытых данных дистанционного зондирования для выявления археологических объектов. Показано как применять спутниковые снимки (Landsat, Sentinel-2) и цифровые модели рельефа (SRTM, Copernicus и др.) для обнаружения и идентификации археологических объектов. Наиболее качественные результаты на предполевом этапе исследований получаются при комбинировании различных типов данных дистанционного зондирования и ГИС-моделирования.

📖 Данилов В. А., Морозова В. А., Федоров А. В., Шлапак П. А. Открытые данные дистанционного зондирования для выявления археологических объектов // Известия Саратовского университета. Новая серия. Серия: Науки о Земле. 2024. Т. 24, вып. 3. С. 150-158. https://doi.org/10.18500/1819-7663-2024-24-3-150-158

#археология

Спутник ДЗЗ

08 Dec, 08:17


Моделирование потока разреженного газа в воздухозаборнике спутника на сверхнизкой околоземной орбите

Коллектив ученых из МГУ провел моделирование течения разреженного газа внутри воздухозаборника космического аппарата на сверхнизкой околоземной орбите (высотой 120–150 км). Основная задача воздухозаборника — захватить часть набегающего потока и привести этот газ в состояние, пригодное для подачи в ионизационную камеру двигателя. Удалось установить зависимость компрессии газа в воздухозаборнике от геометрических параметров воздухозаборника, ориентации аппарата относительно набегающего потока и свойств материалов поверхности.

Исследования связаны с решением амбициозной задачи освоения сверхнизких орбит Земли, которая решается совместными усилиями физического факультета, механико-математического факультета и факультета космических исследований рамках Научно-образовательной школы МГУ “Фундаментальные и прикладные исследования космоса”. На сверхнизких орбитах космический аппарат испытывает заметное аэродинамическое сопротивление. Чтобы его компенсировать, требуется обеспечить двигатель необходимым количеством рабочего тела, то есть газом, который ионизируется, разгоняется и выбрасывается с огромной скоростью через сопло двигателя, создавая тягу.

“Мы рассмотрели вариант, когда рабочее тело для двигателя собирается прямо из набегающего потока. Для этого аппарат оснащается воздухозаборником, основная задача которого состоит в обеспечении необходимого потока и плотности газа в ионизационной камере двигателя. Мы указали на существующие в литературе принципиальные ошибки при моделировании таких течений, а также показали некорректность рассмотрения воздухозаборника в отрыве от следующих за ним элементов внутреннего тракта аппарата”, — рассказал Артем Якунчиков, доцент кафедры инженерной механики и прикладной математики механико-математического факультета МГУ.

Аэродинамическая задача решалась с помощью метода событийного молекулярно-динамического моделирования в трехмерной постановке. Набегающий поток описывался миллионами молекул, параметры которых соответствовали параметрам атмосферы на изучаемой высоте (140 км). Молекулы взаимодействовали с элементами конструкции аппарата, а также между собой. В результате такого моделирования были получены поля всех термодинамических параметров внутри воздухозаборника и в области предполагаемой ионизации, а также силы и тепловые потоки ко всем поверхностям. Это позволило сделать несколько практически значимых выводов о геометрических параметрах воздухозаборника, влиянии закона рассеяния молекул на поверхностях аппарата и угла атаки на компрессию и расход газа в таких системах.

Источник

📖 Yakunchikov, A., Kosyanchuk, V., Filatyev, A., & Golikov, A. (2025). Simulation of rarefied gas flow inside the satellite air intake in ultra-low Earth orbit. Acta Astronautica, 226, 102–112. https://doi.org/10.1016/j.actaastro.2024.11.041

#VLEO

Спутник ДЗЗ

07 Dec, 17:11


🛰С 29 ноября по 4 декабря 2024 г. были проведены первые включения приборов комплекса целевой аппаратуры (КЦА) на спутнике «Ионосфера-М» №1. Проверки показали, что все приборы, как для измерения параметров плазмы, так и для измерения параметров электромагнитного поля, благополучно пережили процесс выведения и работают нормально.

На рисунке — пример регистрации электромагнитного излучения прибором ЛАЭРТ на спутнике «Ионосфера-М» №1 во время первых включений научной аппаратуры. На динамической спектрограмме по вертикали отложена частота от 0.1 до 6 МГц, по горизонтали — время и координаты спутника, цветом отображена интенсивность излучения.

🌍 В настоящее время ведется построение рабочей конфигурации спутников «Ионосфера-М» №1 и №2 . Используя бортовые двигательные установки, они перемещаются вдоль круговой орбиты с тем, чтобы занять рабочее положение в точках, разнесенных на 180 градусов по широте. Начало работы по основной научной программе запланировано на начало 2025 г.

▶️ Новость на сайте ИКИ РАН

Спутник ДЗЗ

07 Dec, 13:36


Покрытие данными ALOS-2 PALSAR-2 ScanSAR Level 2.2

Рассмотрим покрытие данными на примере территории Китая и его окрестностей в 2024 году:

🌍 Код в GEE

Данных пока довольно мало: за 11 месяцев 2024 года набралось 718 снимков. Большая часть территории Китая снята всего 2–3 раза, но есть два исключения. Одно из них — Тайвань, второе предлагаем угадать самостоятельно. Район этот в нынешнем году снимали более 100 раз.

С данными 2021–2023 гг. ситуация примерно такая же, даже немного хуже. Впрочем, раньше не было и этого.

#GEE #SAR

Спутник ДЗЗ

07 Dec, 12:43


Данные ALOS-2 PALSAR-2 ScanSAR Level 2.2

Данные японского спутникового радара PALSAR-2 ScanSAR Level 2.2 находятся в открытом доступе с ноября 2022 года. Тем не менее, доступных данных было довольно мало, и лишь в последнее время в этом деле наметился некоторый прогресс.

РALSAR-2 (Phased Array type L-band Synthetic Aperture Radar-2) — радар L-диапазона (1257,5 МГц), работающий на спутнике ALOS-2. Режим ScanSAR (обзорный) обеспечивает пространственное разрешение 60 м и 100 м для полос обзора 490 км и 350 км соответственно. Режим Stripmap (непрерывный) имеет разрешение 10 м, 6 м и 3 м с полосами обзора 70 км, 70 км и 50 км соответственно. Режим Spotlight (прожекторный) обеспечивает разрешение 1 м x 3 м для участка 25 км x 25 км.

Спутник ALOS-2 находится на солнечно-синхронной орбите с наклонением 97,9° на высоте 628 км с периодом 97 минут. Периодичность данных ALOS-2 составляет 14 суток.

В настоящее время продукты ScanSAR Level 2.2 постепенно выкладываются на платформах:

* JAXA G-Portal
* Google Earth Engine
* Amazon Web Service (AWS)
* NASA Alaska Satellite Facility Data Search (обещают к концу 2024 года)
* Tellus (в будущем)

Доступны данные с августа 2014 года по настоящее время. Данные обновляются ежемесячно. Самые свежие снимки — примерно месячной давности.

Данные PALSAR-2 ScanSAR Level 2.2 представляют собой нормализованные данные обратного рассеяния обзорного режима наблюдения с шириной полосы обзора 350 км. Снимки прошли ортокоррекцию и коррекцию рельефа с использованием цифровой модели поверхности ALOS World 3D (AW3D30).

Данные хранятся в виде 16-битных цифровых чисел (digital numbers, DN). DN можно преобразовать в нормализованное обратное рассеяния в децибелах (γ0) по формуле: γ0 = 10*log10(DN2) - 83,0 дБ

📸 Художественное изображение спутника ALOS-2 (источник)

#данные #SAR #GEE

Спутник ДЗЗ

07 Dec, 08:20


Ubotica и Kongsberg NanoAvionics заключили соглашение о стратегическом партнерстве

Партнерство позволит интегрировать технологию компании Ubotica (Ирландия) по обработке данных на борту спутника, SPACE:AI, в спутниковые платформы, создаваемые NanoAvionics для задач дистанционного зондирования Земли (ДЗЗ).

Ключевым приложением Ubotica SPACE:AI является CogniSAT-CRC (cloud removal and compression — удаление и сжатие облаков), которое автономно удаляет облака с оптических снимков и сжимает данные на орбите, обеспечивая передачу на наземные станции только высококачественных изображений. Это сокращает расходы на передачу данных до 85%.

Обработка данных на борту спутника позволяет предоставлять критически важные данные, полученные спутником ДЗЗ, в режиме, близком к реальному времени. Это необходимо для решения военных задач и в задачах реагирования на чрезвычайные ситуации. Среди заявленных возможностей SPACE:AI — обнаружение судов и мониторинг нефтяных пятен.

Kongsberg NanoAvionics — известный производитель малых спутников. NanoAvionics была создана в Литве. В настоящее время ею владеет норвежская компания Kongsberg.

📸 Спутниковая платформа MP42 компании Kongsberg NanoAvionics (источник)

Источник

#литва #норвегия #ирландия #onboard

Спутник ДЗЗ

06 Dec, 18:14


Образцы данных радарного спутника "Кондор-ФКА" №1

НЦ ОМЗ опубликовал 12 образцов информационных продуктов уровней обработки 2А1 и 2Б1, созданных на основе шести радарных снимков спутника “Кондор-ФКА” №1.

🔗FTP для скачивания: ftp://ftp2.ntsomz.ru
Логин: Kondor_Demo
Пароль: 6752d0e2b6a32

Спецификации и описание уровней обработки данных КА “Кондор-ФКА” представлены в 📖 “Руководстве пользователя...”.

#SAR #данные

Спутник ДЗЗ

06 Dec, 14:21


🔊Цикл научно-популярных лекций для студентов 1 курса «Гидроцикл»🔊

💭6 декабря в 19:30 состоится онлайн встреча в рамках цикла научно-популярных лекций для студентов 1 курса «Гидроцикл».

💭Тема встречи: «Глобально-космическая парадигма формирования гидрологического режима водных объектов».
👤Лектор Наталия Вячеславовна Мякишева, профессор кафедры инженерной гидрологии. Наталия Вячеславовна Мякишева, доктор географических наук, занимается вопросами применения вероятностных методов анализа процессов, формирующих гидрологический режим морей, рек и внутренних водоемов, а также разрабатывает подходы многокритериальных оценок и классификации в гидрологии.

Докладчик расскажет о разрабатываемой новой парадигме формирования режима водных объектов, учитывающей электромагнитное взаимодействие Земли, Солнца и планет солнечной системы, а также космоса.

📍Ссылка для участия: https://rshu200.ktalk.ru/vvdst80x2tg3

#РГГМУ #Гидромет #RSHU

Спутник ДЗЗ

06 Dec, 13:12


Река Маккензи

Самая длинная река Канады, Маккензи, словно конвейерная лента переносит к Северному Ледовитому океану осадочные породы и растворенный в воде углерод (1️⃣ cнимок прибора MODIS спутника Terra, 2007 г.). Часть углерода поступает из оттаивающей вечной мерзлоты и торфяников.

2️⃣ Молочно-белые вихри на спутниковом снимке 2017 года — осадочные породы, которые река Маккензи выносит в море Бофорта.

Источник

#снимки #климат

Спутник ДЗЗ

06 Dec, 10:10


Google Earth Engine (GEE) у нас посвящен раздел в закрепе.
Примеры работы с GEE от разных авторов накапливаются в GEE: проекты/примеры кода.

Спутник ДЗЗ

06 Dec, 09:50


Фильтр Савицкого-Голая для коллекции MODIS

Фильтр Савицкого-Голая (Savitzky-Golay) без использования внешних библиотек в Google Earth Engine, реализованный Гвидо Лемуаном (Guido Lemoine). Код можно взять здесь или здесь.

#GEE

Спутник ДЗЗ

06 Dec, 08:40


Разработка “Росэлектроники” способна прогнозировать опасные природные явления

Холдинг “Росэлектроника” госкорпорации Ростех разработал программный модуль «Прогнозирование», который использует методы искусственного интеллекта и предназначен для прогнозирования опасных природных явлений — штормов, землетрясений, извержений вулканов. Новое ПО стало частью комплекса мониторинга метеорологической и ледовой обстановки.

На основе данных о температуре поверхности суши и моря, скорости воздушных потоков, движении земной коры, ледовых и снежных масс комплекс способен рассчитать вероятность возникновения опасного природного явления и спрогнозировать траекторию его следования.

Разработкой комплекса приема, обработки и ретрансляции космической гидрометеорологической информации занимается входящий в “Росэлектронику” НИИ телевидения — разработчик видеоинформационных систем для мониторинга, навигации и управления объектами.

“Новый модуль не заменяет полностью работу метеоролога, но существенно ее облегчает, поскольку система на ранних стадиях отслеживает опасные природные явления и сигнализирует об их зарождении. Сейчас мы занимаемся отладкой программного обеспечения и параллельно завершаем процедуру сертификации оборудования. К концу 2024 года предприятие будет готово к поставкам системы первым заказчикам”, — отметил генеральный директор НИИ телевидения Алексей Никитин.

Источник

#погода #россия

Спутник ДЗЗ

06 Dec, 07:31


Радарный спутник Sentinel-1C выведен на орбиту

5 декабря 2024 года в 21:20 всемирного времени с космодрома Куру во Французской Гвиане осуществлен пуск ракеты-носителя Vega-C (VV25) с европейским радарным спутником Sentinel-1C. Космический аппарат успешно выведен на солнечно-синхронную орбиту высотой 700 км.

Состоявшийся пуск стал первым для ракет Vega-C после аварии в декабре 2022 г.

Sentinel-1C пополнит европейскую группировку радарных спутников Sentinel-1, в которой сейчас работает единственный спутник — Sentinel-1A, запущенный в 2014 году.

Основной полезной нагрузкой спутников Sentinel-1 является радар С-диапазона — C-band synthetic-aperture radar (C-SAR). Спутники также оборудованы прибором АИС для идентификации морских судов.

📸 Художественное изображение спутника Sentinel-1 (источник)

#SAR #ESA

Спутник ДЗЗ

05 Dec, 11:53


Модернизированная китайская ракета вывела на орбиту спутник радарного и оптического наблюдения Земли

4 декабря 2024 года в 04:46 всемирного времени с космодрома Сичан (Китай) осуществлен пуск ракеты-носителя Kuaizhou-1A (“Куайчжоу-1А”) со спутником “Хайшао-1” (Haishao-1, кит. 海哨一号). Космический аппарат успешно выведен на околоземную орбиту.

Модернизированная твердотопливная ракета-носитель Kuaizhou-1A, по сравнению с предыдущей версией, имеет удлиненные первую и вторую ступени, а также увеличенный с 1,4 м до 1,8 м диаметр головного обтекателя. Грузоподъемность на низкой околоземной орбите (НОО) увеличена с 300 кг до 450 кг, а грузоподъемность на солнечно-синхронной орбите высотой 700 км выросла с 200 кг до более чем 300 кг.

Kuaizhou-1A эксплуатируется компанией Expace, коммерческим подразделением государственной Китайской корпорации аэрокосмической науки и промышленности (CASIC). В арсенале Expace есть более крупная твердотопливная ракета Kuaizhou-11, с обтекателем диаметром 2,65 м, рассчитанная на запуск до 1500 кг на НОО. Expace также разрабатывает многоразовые ракеты-носители на метановом топливе.

Китай имеет большой выбор твердотопливных ракет: Long March 11, Jielong-1 и Jielong-3 от CASC, Hyperbola-1 от Ispace, Ceres-1 от Galactic Energy, Kinetica-1 от CAS Space, а также самая большая — Gravity-1 от Orienspace. Большинство из них — легкие твердотопливные ракеты. Некоторые запускались как с суши, так и с морских платформ.

Весьма примечательна полезная нагрузка Kuaizhou-1A: 🛰 Haishao-1 — ультранизкоорбитальный (ultra-low-orbit) спутник дистанционного зондирования Земли (ДЗЗ) с низким наклонением орбиты (43°). Расчетная высота орбиты спутника — 350 км. Выбранное наклонение орбиты позволяет улучшить пространственно-временной охват наблюдениями в средних и низких широтах, в частности, в Южно-Китайском море.

Haishao-1 оснащен мультиполяризационным радаром, ведущим съемку в X-диапазоне с пространственным разрешением выше 1 метра. Есть возможность съемки с разными комбинациями поляризаций. Аппаратура спутника позволяет обрабатывать полученные данные на борту для извлечения динамической информации об объектах на морской поверхности. Кроме того, на спутнике установлена камера для ночной съемки, которая, в частности, позволяет вести съемку синхронно с радаром.

Haishao-1 установил сразу несколько всекитайских рекордов: рекордное время от начала разработки (февраль 2024 года) до запуска, первый коммерческий мультиполяризационный радарный спутник, первый интегрированный спутник ДЗЗ с возможностью радарной и оптической съемки, а также первый сверхнизкоорбитальный радарный спутник.

📸 Художественное изображение спутника Haishao-1 (источник)

#китай #SAR #оптика #VLEO #onboard

Спутник ДЗЗ

05 Dec, 09:31


Саудовская компания Neo Space Group приобрела UP42 у Airbus

Саудовская компания Neo Space Group (NSG) приобрела маркетплейс спутниковых данных UP42 у компании Airbus Defence and Space.

UP42 предоставляет клиентам спутниковые и аэроснимки, а также цифровые модели рельефа. Ее партнерами являются известные поставщики спутниковых данных: Airbus, Planet, BlackSky, Umbra, ICEYE, Capella Space и другие. Компания базируется в Берлине.

NSG — космическое подразделение суверенного фонда Саудовской Аравии, созданное в начале этого года. В NSG заявили, что UP42 станет частью геопространственного подразделения компании.

Источник

#KSA

Спутник ДЗЗ

05 Dec, 08:08


Вегетационные индексы в виноградарстве

В работе (Giovos et al., 2021) собрано более 90 вегетационных индексов, используемых в виноградарстве

Индексы рассчитывались по снимкам, полученных со спутников, самолетов и БПЛА. Чаще всего используется индекс NDVI. Больше всего публикаций, посвященных применению вегетационных индексов в виноградарстве — у ученых Испании и Италии. Наиболее распространенными приложениями данных дистанционного зондирования (ДЗЗ) являются мониторинг и оценка водного стресса и разграничение хозяйственных зон (management zones) виноградников. Среди платформ ДЗЗ преобладают БПЛА.

#сельхоз #индексы

Спутник ДЗЗ

04 Dec, 12:32


Границы сельскохозяйственных полей Японии

Japanese Farmland Parcel Polygons — границы сельскохозяйственных полей Японии. Полигоны границ получены с помощью ручной оцифровки данных аэрофотосъемки и спутниковых снимков.

Внимание! Наземная проверка данных не проводилась.

Размер данных 2024 года составляет 31 Гб.

🛢 Данные и их описание на сайте Source Cooperative

📹 Источник

#данные #сельхоз #япония

Спутник ДЗЗ

04 Dec, 08:27


Spire ассимилировала данные ГНСС-рефлектометрии в модели прогноза погоды

Специалисты Spire, сообщили об успешной ассимиляции данных ГНСС-рефлектометрии миссии CYGNSS в свои модели прогнозирования погоды.

Группировка малых спутников CYGNSS измеряет скорость океанского ветра, что позволяет улучшить прогнозирование ураганов. Данные ГНСС-рефлектометрии (GNSS-R), полученные спутниками CYGNSS, улучшили прогнозы Spire для температуры воздуха на высоте 2 м, скорости ветра на высоте 10 м, а также осадков.

Сравнение с данными наземных метеостанций во время шторма Бабет (Babet) в 2023 году показало, что наблюдения GNSS-R Level-1 и Level-2 улучшили прогнозы скорости ветра (10 м). При этом данные GNSS-R Level-1 Delay Doppler Maps оказались наиболее эффективными для краткосрочных прогнозов (0–19 часов), а данные Level-2 — для повышения точности прогнозов после 37 часов.

Источник

#GNSSR #погода

Спутник ДЗЗ

04 Dec, 04:12


Применение математического моделирования в задачах разработки космических систем и комплексов и в управлении космическими полетами
#диалог_мгу

4 декабря под руководством ректора МГУ академика Виктора Садовничего на экспертной площадке Московского университета «Диалог о настоящем и будущем» пройдет научный семинар «Применение математического моделирования в задачах разработки космических систем и комплексов и в управлении космическими полетами». Мероприятие проводится в рамках спецсеминара «Спектральная теория дифференциальных операторов».

Процесс проектирования, разработки и эксплуатации космической техники, управления полетом является крайне сложным и требует учета множества факторов, таких как параметры орбитального полета, функционирования систем космического аппарата и наземного контура управления, воздействия внешней среды на космический аппарат. Применение математического моделирования делает возможным учет большого количества факторов, влияющих на функционирование космического аппарата и космической системы в целом, и позволяет на качественно новом уровне решать задачи определения характеристик работы космической системы, планирования работы такой системы и управления полетом.

На семинаре будут представлены решения задач определения параметров орбитального движения и прогноза орбиты Международной космической станции, работы солнечных батарей, восстановления траектории сближения космического корабля со станцией. Также представлен программный комплекс MIDE (Mission Integrated Development Environment) математического моделирования космических миссий, разработанный на факультете космических исследований, и его применение для решения ряда прикладных задач.

Когда: 4 декабря в 18:30

Прямая трансляция будет доступна на сайте.

Спутник ДЗЗ

03 Dec, 12:40


Платформа CubeSatGPT для обмена информацией со спутниками

Компания Vector Space Biosciences собирается отправить на орбиту наноспутник CubeSat с тихоходками на борту. Предполагается исследовать воздействие на тихоходок микрогравитации и космической радиации.

Для получения информации о состоянии тихоходок будет использована платформа CubeSatGPT. Компания предлагает бесплатную подписку на нее для школьников и преподавателей. По словам генерального директора Vector Space Biosciences Касиана Фрэнкса (Kasian Franks), школьники юннаты смогут “задавать вопросы CubeSat'у с тихоходками, <…> вроде «Как сегодня поживают тихоходки?» или «Опишите, насколько холодно в космосе для тихоходок», а также более сложные запросы, включающие детали измерений в условиях микрогравитации и космической радиации”. Компания предполагает использовать CubeSatGPT для запусков CubeSat с биотехнологическими, фармацевтическими, материаловедческими и другими полезными нагрузками.

#ИИ

Спутник ДЗЗ

03 Dec, 09:40


Open Earth Engine Library (продолжение)

OEEL насчитывает десятки функций. Вот некоторые из них, относящиеся к объектам Image, ImageCollection, Feature и FeatureCollection:

🌍 Image

arrayDTW — возвращает DTW (dynamic time warping) bмежду двумя изображениями, для каждого пикселя
inverseDistanceInterpolation — пространственная интерполяция методом IDW (inverse distance weighting)
kriging — пространственная интерполяция с помощью кригинга
propertyAsBand — создает новый слой (канал) изображения из свойств этого изображения
semivariogram — вычисляет семивариограмму

🌍 ImageCollection

OtsuThreshold — рассчитывает порог Оцу (Otsu) для коллекции
SavatskyGolayFilter — фильтрация снимков коллекции фильтром Савицкого-Голая (Savitsky-Golay). В названии функции содержится ошибка)
enhancingCollection — алгоритм, расширяющий коллекцию, добавляя к ней новую коллекцию. Каждое изображение первой коллекции сливается с изображением второй коллекции
fromSingleImage —  загрузка изображения как коллекции
medoid — вычисляет медоид коллекции
movingWindow — фильтрация коллекции методом “скользящего окна”

🌍 Feature

asLabel — генерирует функцию, преобразующую Feature в аннотацию на изображении

🌍 FeatureCollection

fromList — преобразует List в FeatureCollection

#GEE #python

Спутник ДЗЗ

03 Dec, 09:10


Open Earth Engine Library (OEEL) — коллекция полезных функций для Google Earth Engine (GEE).

Для использования OEEL с GEE JavaScript API достаточно импортировать ее код

var oeel=require('users/OEEL/lib:loadAll')


а затем использовать нужные функции.

По мере роста библиотеки время загрузки также увеличивается. Чтобы решить эту проблему, разработчики предлагают версию библиотеки с быстрой загрузкой

var oeel=require('users/OEEL/lib:loadAllSF')


Отметим, что эта версия не должна использоваться для отладки.

Чтобы получить информацию о функциях, добавьте в конец кода следующую строку

print('List of functions used',oeel.refs())


Вы получите список всех использованных функций и другую связанную с ними информацию.

OEEL существует в виде Python-пакета.

Установка:

pip install oeel


Импорт:

from oeel import oeel


🖥 Репозиторий кода OEEL
🖥 Код примеров

#GEE #python

Спутник ДЗЗ

03 Dec, 07:53


SatVu привлекла инвестиции на сумму 20 миллионов фунтов стерлингов

Британская компания SatVu, занимающаяся тепловой инфракрасной съемкой из космоса, привлекла 20 млн фунтов стерлингов инвестиций. Это позволит ускорить разработку и запуск спутников HotSat-2 и HotSat-3, запланированный на 2025 год.

Первый спутник компании, HotSat-1, запущенный в июне 2023 года, выполнял тепловую съемку с пространственным разрешением 3,5 метра. Через полгода работы на орбите у спутника отказала камера. Тем не менее, компания признала миссию HotSat-1 успешной.

📸 Карта температуры земной поверхности, построенная по данным SatVu HotSat-1.

Источник

#LST #UK

Спутник ДЗЗ

02 Dec, 13:44


🛰 Завершены летные испытания космического комплекса «Метеор-3М»

Государственная комиссия приняла решение о завершении лётных испытаний и рекомендовала государственному заказчику принять космический комплекс «Метеор-3М» с космическим аппаратом «Метеор-М» № 2-4 производства Корпорации «ВНИИЭМ» в эксплуатацию.

Космический комплекс «Метеор-3М» предназначен для дистанционного зондирования Земли и атмосферы в интересах метеорологии, гидрологии, агрометеорологии, климатического мониторинга, мониторинга экологической обстановки и чрезвычайных ситуаций природного и техногенного характера.

Он также служит для научных гелиогеофизических исследований и анализа атмосферы в глобальном масштабе, используется для поддержки спасательных операций.

ℹ️ Подробнее — на сайте

Спутник ДЗЗ

02 Dec, 11:41


OpenCosmos изготовит спутники для исследования магнитного поля Земли и ионосферной плазмы

Европейский производитель малых спутников Open Cosmos подписал контракт с Европейским космическим агентством (ESA) на создание трех малых спутников NanoMagSat для изучения магнитного поля и ионосферы Земли. Контракт стоимостью 36,5 млн долларов (34,6 млн евро) включает в себя разработку, запуск и ввод спутников в эксплуатацию.

В начале этого года ЕSA выбрало NanoMagSat и Tango (пару малых спутников для мониторинга парниковых газов) в качестве миссий Scout по программе Earth Explorer. Миссии Scout должны быть дешевыми (не более 35 млн евро) и быстрыми (срок от начала работ до запуска — не более трех лет).

Три спутника форм-фактора CubeSat 16U будут работать на орбитах высотой 545 км (два — с наклонением 60°, третий — на полярной орбите). Каждый спутник будет оснащен магнитометрами на штанге и зондом Ленгмюра для измерения магнитного поля Земли и ионосферной плазмы. Первый спутник будет запущен в конце 2027 года, а два других — в 2028 году.

NanoMagSat будет продолжать наблюдения, начатые миссией Swarm, в которой для изучения магнитного поля Земли используются три более крупных спутника.

Кроме Open Cosmos, в команду разработчиков входят организации из Дании, Франции, Норвегии и Испании, которые изготавливают полезную нагрузку, а также штангу и звездные датчики.

Источник

#UK #ионосфера

Спутник ДЗЗ

02 Dec, 09:22


Sidus Space подготовила LizzieSat-2 к запуску в декабре

Американская компания Sidus Space завершила подготовку к запуску своего спутника LizzieSat-2. Предполагается, что он будет выведен на орбиту в составе миссии SpaceX Bandwagon-2, запланированной на декабрь нынешнего года.

LizzieSat-2, созданный на заводе Sidus Space в штате Флорида, содержит несколько полезных нагрузок: AIS для отслеживания морской обстановки, мультиспектральный датчик для обнаружения метана и камеры высокого разрешения. В частности, на спутнике установлен HEO Holmes Imager от HEO (США), дочерней компании австралийской HEO. Эта камера используется в платформе HEO Inspect, предназначенной для инспекции спутников на орбите и наблюдения за космическими объектами. По договору между компаниями LizzieSat-2 будет поставлять данные для HEO.

Спутник оснащен разработанным в Sidus Space процессором FeatherEdge AI для обработки данных на орбите. Предполагается, что такая обработка будет использована в задачах осведомленность о ситуации в космосе (SSA) и мониторинга окружающей среды,

📸 Художественное изображение КА LizzieSat

Источник

#США #австралия #onboard

Спутник ДЗЗ

02 Dec, 08:16


Обнаружение погруженного в воду пластика по данным БПЛА и спутника Sentinel-2

В работе Fronkova et al. исследовались возможности дистанционного обнаружения пластика, погруженного в пресную воду. Ученые развернули пластиковый тент размером 10 × 10 м в пресноводном озере и в течение двух недель снимали его беспилотным летательным аппаратом (БПЛА) с несколькими датчиками, разным пространственным разрешением и глубиной погружения (данные съемки доступны), а также спутником Sentinel-2.

Оказалось, что при помощи беспилотника погруженный в воду пластиковый тент можно обнаружить на глубине ~0,5 м в ближнем инфракрасном диапазоне (~810 нм) и в одном из каналов “красного края” (~730 нм). Но лучшие результаты показал красный канал (~669 нм) — 84% истинных положительных результатов при глубине погружения пластика ~1 м. Указанные спектральные каналы превзошли по точности обнаружения специальный индекс пластика (Plastic Index, PI).

В целом, отражательная способность пластикового тента в диапазоне 400–1000 нм ослабевала от ~0,2, при погружении на несколько сантиметров, до ~0,05 при погружении на глубину ~0,5 м.

Ни в отдельных каналах Sentinel-2, ни в спектральных индексах (PI или Floating Debris Index (FDI)) не удалось определить, находится ли пластиковый тент размером 10 × 10 м под поверхностью воды. В целом, работа показала, что для обнаружения притопленного пластика пространственное разрешение гораздо важнее, чем спектральное.

#пластик

Спутник ДЗЗ

01 Dec, 12:39


Речные геокартины Дэниела Коу

Цифровые модели рельефа служат картографу и художнику Дэниелу Коу (Daniel Coe) материалом для создания захватывающих картин речных ландшафтов, таких как дельта реки Лена. Геокартина или, если угодно, визуальная интерпретация геоморфологических особенностей дельты, получена на основе цифровой модели рельефа ArcticDEM, созданной в Polar Geospatial Center Университета Миннесоты.

Работы Коу можно найти на его 🔗 сайте и, в максимальном разрешении, на flickr-аккаунте. На сайте есть не только галерея работ, но и учебные материалы по созданию геокартин.

#снимки #DEM

Спутник ДЗЗ

01 Dec, 10:29


1 декабря в России празднуют День математика. Дата приурочена ко дню рождения Николая Ивановича Лобачевского, одного из первооткрывателей неевклидовой геометрии.

С праздником, коллеги!

Спутник ДЗЗ

01 Dec, 09:24


🙏Благодарим, расположив в календарном порядке, телеграм-каналы, делавшие репосты и цитировавшие наши публикации в ноябре 2024 года:

* @gis_proxima
* @agrodt
* @solar_lunar
* @naukaidannye
* @rscc_rscc
* @sabakac
* @grishkafilippov
* @ykuthydromet
* @twrussia
* @UzbekistanTtransparentWorld
* @SCANEX_news
* @wind_vostok
* @IngeniumNotes
* @dobriy_ovchinnikov
* @militaryrussiaru
* @igce01
* @pozivnoy_kazman

Спасибо, коллеги!

Спутник ДЗЗ

01 Dec, 08:06


Космические и суборбитальные запуски:

* в ноябре 2024 года
* с января по ноябрь 2024 года

#справка

Спутник ДЗЗ

01 Dec, 07:59


Список космических и суборбитальных запусков в ноябре 2024 года [источник].

#справка

Спутник ДЗЗ

30 Nov, 12:01


Российские ученые создали суперкомпьютерную модель деятельного слоя суши (почвы, озер и растительности), которая поможет прогнозировать влияние климатических изменений на состояние экосистем. Ожидается, что она станет частью национальной климатической модели и национальной системы климатического мониторинга и прогноза.

Вместе с учеными МГУ авторами модели, получившей название TerM (Terrestrial Model), выступили специалисты Института вычислительной математики им. Г. И. Марчука РАН. Разработка использует результаты расчетов, выполненные на суперкомпьютере "Ломоносов-2".

"Внедрение такой модели в составе национальной климатической модели позволит более реалистично моделировать климат и прогнозировать его изменения на территории России с учетом естественных и антропогенных факторов. В будущем, к примеру, можно будет оценивать влияние тех или иных решений в области регулирования выбросов на состояние климатической системы. С учетом сложности климатической системы, прогноз этой реакции возможен только с учетом локальных процессов в деятельном слое суши, которые мы моделируем", — сообщил старший научный сотрудник лаборатории суперкомпьютерного моделирования природно-климатических процессов Научно-исследовательского вычислительного центра МГУ им. М. В. Ломоносова Михаил Варенцов.

Исследователь также рассказал про другую разработку в области моделирования погоды и климата — новую ИИ-модель, которая позволяет прогнозировать эффект городского острова тепла. Остров тепла — это локальная температурная аномалия в городах, которая может усиливать тепловой стресс и создавать дополнительные риски для здоровья горожан в условиях летней жары. Для построения этой модели используется новый суперкомпьютер "МГУ-270", ориентированный на ИИ-задачи.

"Вначале мы разработали модель для центра Москвы, а потом доработали ее, и теперь наша система позволяет получить карту температурах аномалий для всей Московской агломерации. По точности прогноза она сопоставима с классическими подходами и может использоваться для анализа температурных изменений в мегаполисах".

Источник

#россия #климат

Спутник ДЗЗ

30 Nov, 10:52


Очень хороший комментарий Игоря Афанасьева и Коли Вдовина в конце трансляции Роскосмоса с запуска "Кондор-ФКА"№2.

На фоне кадров полученных первым аппаратом серии Кондор-ФКА объясняют возможности/ режимы съемки (полоса захвата и разрешение ( метров на 1 пиксель) радиолокационной съемки!

Я такие кадры вижу впервые - очень здорово!

Спутник ДЗЗ

30 Nov, 07:31


Группировка спутников “Кондор-ФКА” № 1 и № 2

Орбитальная группировка из двух спутников “Кондор-ФКА” обеспечивает проведение радарной съёмки земной поверхности в полосе широт от 85° с.ш. до 85° ю.ш. в детальном прожекторном (ДПР), детальном непрерывном (ДНР) и обзорном режимах (ОР) с возможностью реализации интерферометрической съемки в каждом из указанных режимов.

Группировка “Кондор-ФКА” обеспечивает среднюю периодичность наблюдения произвольного объекта поверхности Земли на широте 30° не более 12–14 часов с вероятностью 0,9 или не более 24–26 часов с вероятностью 0,9 при обеспечении однопроходной интерферометрической съемки объектов двумя космическими аппаратами.

Суточная производительность группировки:

• не менее 200 условных кадров 10 км x 10 км в ДПР с разрешением 1–2 м или
• не менее 200 000 кв. км в ДНР с разрешением 2–3 м или
• не менее 1 000 000 кв. км в ОР с разрешением 6–12 м.

📖 Руководство пользователя данными "Кондор-ФКА"

Источник

#россия #SAR

Спутник ДЗЗ

30 Nov, 07:01


Запущен "Кондор-ФКА" № 2

29 ноября 2024 года в 21:50:25 всемирного времени (30 ноября в 00:50:25 московского времени) с площадки № 1С космодрома Восточный осуществлён пуск ракеты-носителя "Союз-2.1а" с разгонным блоком “Фрегат” и спутником дистанционного зондирования Земли "Кондор-ФКА" № 2. Космический аппарат с разгонным блоком были успешно выведены на околоземную орбиту, после чего разгонный блок вывел аппарат на целевую орбиту.

📖 Пресс-кит Роскосмоса: «Запуск радиолокационного спутника “Кондор-ФКА” № 2»

Спутник “Кондор-ФКА” № 2 будет вести круглосуточное всепогодное радиолокационное (радарное) наблюдение Земли, получая данные высокого и среднего пространственного разрешения.

В настоящее время на орбите работает 🛰 “Кондор-ФКА” № 1, запущенный 27 мая 2023 года.

• Описание спутников “Кондор-ФКА”
• Характеристики режимов съёмки

📹 Запуск “Кондор-ФКА” № 2

#россия #SAR

Спутник ДЗЗ

26 Nov, 13:23


Фильтрация и классификация в Earth Engine

В статье есть два любопытных примера использования Google Earth Engine:

➊ Сглаживание временных рядов NDVI с помощью фильтра Савицкого-Голая (Savitzky–Golay)
➋ Классификация полей сельскохозяйственных культур (попиксельная) методом “случайного леса” (random forest)

Фильтр Савицкого-Голая реализован в виде функции библиотеки OpenEarthEngineLibrary, о которой мы еще поговорим.

Мы обычно не используем классификацию в Earth Engine, предпочитая выполнять ее в R по полученным из EE снимкам. Но кому-то приведенный пример может пригодиться.

📸 Исходный временной ряд NDVI (ndvi) и ряд, сглаженный фильтром Савицкого-Голая (ndvi_sg).

#GEE

Спутник ДЗЗ

26 Nov, 11:46


📍 «Прогресс» проводили, пришло время для запуска с Восточного!

На космодроме собрали ракету «Союз-2.1а» со спутником «Кондор-ФКА» № 2.
 
🗓 Вывоз — 27 ноября
🗓 Пуск — 30 ноября в 00:50 по московскому времени.

Спутник ДЗЗ

26 Nov, 09:09


Программный комплекс “Интеграл” для моделирования космических группировок и космических аппаратов

📖 Описание возможностей и примеры работы комплекса приведены в статье.

Комплекс состоит из модулей, которые условно можно разделить на 6 категорий по назначению:

1. Орбитальная динамика, включает численные методы интегрирования траекторий (Эверхарт, Дорманд-Принс, Кутта-Фелберг, Рунге-Кутта 4-го порядка), модели среды (атмосфера, эфемериды тел Солнечной системы, давление солнечного излучения, геопотенциал и его изменение и влияние тени), а также полуаналитическую модель SGP4.
2. Мониторинг космического пространства, поддерживающий учет программы наблюдений, а также оптический и микроволновой диапазон, в котором работают наблюдатели.
3. Дистанционное зондирование Земли в микроволновом и оптическом диапазонах с учетом программ наблюдений (или автоматическим их выбором), а также определением показателей качества системы.
4. Космическая связь с расчетом сеансов связи, параметров каналов связи с учетом межспутниковой передачи данных и маршрутизации сообщений на сетях, устойчивых к разрывам.
5. Конструктор космического аппарата — модуль, позволяющий, используя информацию о компонентах из базы данных и перечень требований к космическому аппарату (КА), подобрать конфигурации КА, наиболее подходящие, например, по массе.
6. Имитационный эксперимент — модуль, помогающий имитировать выполнение полетных заданий, моделировать работу подсистем, проверять корректность работы бортовых алгоритмов и, соответственно, выдавать технические требования к КА.

#россия #софт

Спутник ДЗЗ

26 Nov, 08:00


Венгерская телекоммуникационная компания 4iG планирует запустить спутники наблюдения Земли и телекоммуникационный спутник в рамках программы HUSAT

В своем заявлении 4iG назвала HUSAT “крупнейшей частной спутниковой программой в Венгрии и в регионе Центральной и Восточной Европы”.

В планах компании — запуск телекоммуникационного спутника HUGEO на геостационарную орбиту и создание группировки из восьми спутников дистанционного зондирования Земли (ДЗЗ) на низкой околоземной орбите — HULEO. Группировка должна состоять из шести спутников оптико-электронного наблюдения и двух радарных спутников.

Спутники ДЗЗ будут изготовлены дочерней компанией 4iG Space and Defense Technologies на заводе компании в Мартонвасаре (Венгрия), строительство которого должно быть завершено к 2026 году. Геостационарный спутник будет создаваться совместно с зарубежным партнером.

По планам 4iG, геостационарный спутник и первые оптические спутники должны начать работать к концу 2028 года.

📸 Художественное изображение телекоммуникационного спутника HUGEO.

Источник

#венгрия

Спутник ДЗЗ

25 Nov, 14:12


SpaceNews сообщает, что аппараты SuperView Neo-3 будут обеспечивать разрешение 0,7 м с шириной полосы обзора 100 км.

#китай

Спутник ДЗЗ

25 Nov, 12:18


Создан высокоточный датчик метана для беспилотников

Исследователи из России разработали прибор для оценки концентрации метана в атмосфере при помощи метода модуляционной лазерной спектроскопии. Прибор можно установить на малые БПЛА, способные поднимать до 5 кг полезной нагрузки.

Датчик позволяет измерять интегральную концентрацию метана с разрешением 15 частей на миллион на метр на высоте 50 м, что составляет примерно 7% от содержания метана в атмосферном воздухе. В этом отношении он значительно превосходит аналогичные зарубежные разработки, пригодные для установки на БПЛА.

"Внедрение разработанного газоанализатора для дистанционного мониторинга метана в зонах как естественных, так и антропогенных выбросов существенно облегчит процесс мониторинга. Это позволит экономически эффективно и оперативно детектировать утечки на газопроводах, оценивать качество воздуха вблизи опасных производств, а также в Арктике и на заболоченных территориях" — пояснил ведущий инженер МФТИ Вячеслав Мещеринов.

Ранее, российские ученые из ИКИ РАН и МФТИ, совместно с коллегами из Венского технического университета, разработали перестраиваемый диодно-лазерный спектрометр “ДЛС-Л” для изучения летучих соединений на Луне. С его помощью специалисты намерены изучить содержание водорода, кислорода, углерода и их изотопов (разновидностей химического элемента), выделенных из реголита приповерхностных слоев. Исследователи ожидают, что прибор войдет в состав полезной нагрузки миссии “Луна-27”. Предполагается, что спускаемый модуль миссии с научными приборами на борту совершит посадку вблизи Южного полюса Луны в 2028 году. Результаты работы опубликованы в журнале Planetary and Space Science.

#CH4 #россия

Спутник ДЗЗ

25 Nov, 09:14


Запуск последних спутников группировки Maxar WorldView Legion планируется в 2025 году

Компания Maxar Intelligence планирует запуск пятого и шестого спутников WorldView Legion в начале 2025 года. Этот запуск завершит развертывание группировки спутников оптико-электронного наблюдения Земли WorldView Legion, состоящей из шести космических аппаратов.

В 2024 году компания успешно запустила четыре спутника WorldView Legion — два в мае и два в августе.

Третий и четвертый спутники WorldView Legion впервые для Maxar были выведены на орбиту со средним наклонением (mid-inclination orbit), что позволит собирать изображения “от рассвета до заката”. Такая орбитальная конфигурация позволяет спутникам вести наблюдение за регионами, лежащими между 45º северной и 45º южной широты, где проживает около 90% населения Земли.

Спутниковая группировка Maxar включает четыре старых спутника (WorldView-1, -2, -3 и GeoEye-1), а также космические аппараты WorldView Legion-1 и -2, которые работают на солнечно-синхронной орбите. WorldView Legion-5 и -6 присоединятся к своим предшественникам на орбите со средним наклонением, что расширит возможности покрытия группировки.

📸 Три снимка аэропорта в Крайстчерче (Новая Зеландия), полученные одним и тем же спутником в течение трех часов 7 ноября 2024 года. На снимках движение самолетов и операции по заправке топливом в режиме, близком к реальному времени.

Источник

#maxar

Спутник ДЗЗ

25 Nov, 07:11


Запущены два китайских радарных спутника

24 ноября 2024 года в 23:39 всемирного времени с космодрома Цзюцюань осуществлён пуск ракеты-носителя “Чанчжэн-2С” с двумя спутниками дистанционного зондирования Земли (ДЗЗ) — Siwei Gaojing-2 03 (四维高景二号03) и Siwei Gaojing-2 04 (四维高景二号04).
Космические аппараты успешно выведены на заданную околоземную орбиту.

Siwei Gaojing-2 03 и 04 (иначе: SuperView Neo-2 03/04) — радарные спутники высокого разрешения китайской коммерческой спутниковой системы ДЗЗ нового поколения Siwei Gaojing. Оператором группировки является компания China Siwei Survey and Mapping Technology Co. Ltd.

Ранее сообщалось, что группировка Siwei Gaojing (SuperView Neo), будет включать в себя не менее 28 спутников, разделенных на 3 серии (16+4+8). Аппараты серии SuperView Neo-1 (Siwei Gaojing-1) предназначены для получения оптических снимков с разрешением 20–30 см. Спутники SuperView Neo-2 будут получать радарные снимки с разрешением 50 см в прожекторном режиме. Наконец, SuperView Neo-3 (Siwei Gaojing-3) смогут получать оптические снимки с большой шириной полосы обзора, и с разрешением лучше 1 метра.

В настоящее время на орбите находятся 2 оптических спутника высокого разрешения, 4 радарных спутника и 1 оптический спутник с широкой полосой захвата из состава группировки Siwei Gaojing.

📸 Художественное изображение спутника Siwei Gaojing-2 (источник)

#китай #SAR

Спутник ДЗЗ

24 Nov, 13:24


Ледник Федченко

Ледник Федченко берет свое начало на высоте 6 200 метров над уровнем моря и течет на север, собирая лед с ледников-притоков. Расположенный на Памире, этот ледник является один из самых длинных ледников планеты за пределами полярных регионов. Площадь ледника Федченко составляет около 700 км².

Цвет ледника меняется от блестящей белизны чистого льда на горных вершинах до пыльно-коричневого цвета в нижней части, где лед полностью скрывается под слоем обломков. Это хорошо видно на 📸 снимке Sentinel-2, сделанном 25 августа 2024 года.

1️⃣ Изображение в естественных цветах. 2️⃣ Комбинация каналов 8-4-3. Снег выглядит белым, лед — бледно-голубым, растительность — красной.

На снимке ледника отчетливо видны параллельные линии, светло- и темно-коричневые на изображении в естественных цветах. Более темные линии известны как медиальные морены. Они дают представление о направлении движения льда по долинам и представляют собой скопления обломков, размытых ледником с прилегающих горных склонов и скальных выступов.

Ледник Федченко был открыт в 1878 году русским путешественником В. Ф. Ошаниным и назван им в честь русского исследователя и путешественника по Памиру, первооткрывателя Заалайского хребта и пика Ленина Алексея Павловича Федченко, погибшего в Альпах в 1873 году.

#снимки #лед

Спутник ДЗЗ

24 Nov, 09:03


Ученые NASA получили доступ к данным радарной группировки Airbus

NASA заключило соглашение с компанией Airbus Defenсe and Space о доступе к данным радарных спутников компании и цифровой модели рельефа (ЦМР) WorldDEM, которые будут использоваться специалистами агентства в соответствии с условиями программы Commercial SmallSat Data Acquisition (CSDA). В рамках CSDA NASA приобретает данные и продукты коммерческих операторов ДЗЗ, обладающие более высоким разрешением, частотой съемки или другими возможностями, отсутствующими у спутников агентства.

Специалисты NASA смогут заказывать съемку радарной группировки Airbus, включающей три спутника — TerraSAR-X, TanDEM-X и PAZ — с пространственным разрешением от 25 см до 40 м. Данные Airbus будут использоваться для поддержки миссии NISAR, в частности, для калибровки и проверки работы радаров. Для этого Airbus предоставит более 1500 радарных сцен и почти 75 000 кв. км продуктов WorldDEM.

Набор продуктов WorldDEM включает доступ к глобальной ЦМР WorldDEM Neo, созданной на основе данных TerraSAR-X и TanDEM-X, полученных в период 2017–2021 гг. WorldDEM Neo обеспечивает “бесшовное покрытие от полюса до полюса, с шагом пикселей 5 м и относительной точностью 2 м”. Доступны будут как цифровые модели поверхности, так и цифровые модели рельефа.

Радарные спутники TerraSAR-X (запущен в 2007 г.) и TanDEM-X (2010) созданы в рамках государственно-частного партнерства между Немецким центром авиации и космонавтики (DLR) и компанией EADS Astrium, изготовившей оба спутника. Эксклюзивные права на коммерческую эксплуатацию изначально принадлежали компании Astrium, и, после ряда слияний, перешли к компании Airbus Defence and Space.

Испанский радарный спутник Paz (2018), изготовленный уже Airbus, работает в единой группировке с TerraSAR-X и TanDEM-X и построен на той же спутниковой платформе Service Module. Между Airbus и испанским оператором спутника, компанией Hisdesat, заключено соглашение о сотрудничестве.

Забавно, что Paz (в переводе с испанского — “мир”) считается спутником двойного назначения, а Вики так и вовсе называет его первым испанским разведывательным спутником. А вот про немецкие спутники такого не сказано, несмотря на наличие у них режима съемки с разрешением 25 см.

📸 Снимок радарной группировки Airbus в режиме Staring SpotLight с разрешением до 25 см: кратер Панчбоул (Punchbowl) возле г. Гонолулу (шт. Гавайи, США) (источник).

#SAR

Спутник ДЗЗ

23 Nov, 09:21


Полностью согласны с докладчиком: “Интересно получилось”.

Хорошо бы выложить код модели в открытый доступ.

Спутник ДЗЗ

23 Nov, 09:14


Модель опубликована в журнале “Астрономический вестник”:

📖 Аванесов Г.А., Жуков Б.С., Михайлов М.В., Шерстюков Б.Г. Космические регуляторы климата Земли // Астрономический вестник. Исследования Солнечной системы. – 2023. – Т. 57. – №6. – C. 521–531. doi: 10.31857/S0320930X23060014

Кроме того, результаты работы докладывались на Всероссийском семинаре “Проблемы дистанционного зондирования Земли из космоса” в ИКИ РАН 5 сентября 2024 года.

📹 Видеозапись семинара

#арктика

Спутник ДЗЗ

23 Nov, 09:07


Выводы по докладу

Целиком взяты нами из презентации.

🔹 Сопоставление астрономической модели инсоляции арктической зоны полярных суток Земли с данными из истории климата и с результатами современных исследований динамики таяния льдов позволили выявить их глубинные причины, связанные с определенными сочетаниями астрономических факторов. Аналогичные причины в наше время подводят антарктические льды к замерзанию, которое затем продлится около 10 тыс. лет.

🔹 Астрономическая модель инсоляции зон полярных суток Земли требует дальнейшего развития. Следует разработать аналогичные модели для других климатических зон планеты. В первую очередь для экваториальной зоны, где идет снижение контраста между экваториальной зимой и летом, связанное с уменьшением эксцентриситета орбиты Земли. В конечном счете, модели должны быть объединены в одну общую, включающую в себя все значимые космические факторы. Можно ожидать, что в перспективе такая модель даст ключ к управлению климатом Земли.

🔹 Проблему таяния ледников Арктики следует отделить от проблемы роста содержания СО2 в атмосфере Земли поскольку они имеют разную физическую природу.

🔹 Положение с таянием льдов Арктики следует признать катастрофическим, в связи с чем необходимо принятие важных научно обоснованных организационных и управленческих решений.

#арктика

Спутник ДЗЗ

23 Nov, 09:01


Исследование причин и последствий таяния льдов Арктики

Доклад Г.А. Аванесова на пленарном заседании XXII международной конференции “Современные проблемы дистанционного зондирования Земли из космоса” (📹 видео, 📚 тезисы и презентация).

Авторы разработали астрономическую модель инсоляции полярных зон Земли и сопоставили ее с данными истории климата и с результатами современных исследований динамики таяния льдов Северного Ледовитого океана.

Модель учитывает влияние эксцентриситета орбиты, наклонение оси вращения планеты к плоскости эклиптики и прецессию. Нутация не учитывается.

Предполагается, что при постоянном номинальном наклонении оси вращения Земли и постоянном нулевом эксцентриситете ее орбиты на планете установились бы стационарные полярные шапки. При этом разность энергии инсоляции за время полярного дня и энергии излучения за время полярной ночи равна нулю. Положительные значения этой разности, при других значениях эксцентриситета и наклонения, соответствуют профициту энергии (за время полярного дня тает больше льда, чем намораживается за ночь), отрицательные — ее дефициту. В баланс энергии полярной зоны вносят вклад и другие процессы (отражение солнечного излучения, горизонтальный перенос тепловой энергии и др.), которые в модели не учитываются.

Данные, полученные путем исследования ледяных кернов, добытых в Антарктике и в Гренландии, показали 1️⃣, что около 10 тыс. лет тому назад произошло повышение среднегодовой температуры в районах полюсов Земли. В Антарктике она повысилась на 7 °C, а в Арктике — на целых 15 °C. Но это не привело к быстрому росту температуры на всех материках планеты, так как в районах полюсов Земли сложились условия для таяния льдов во время полярного дня.

Льды Арктики и Антарктики начали действовать, как огромные тепловые аккумуляторы 2️⃣, работающие в режиме рекуперации энергии. При этом модель инсоляции указывает 3️⃣ на наличие профицита солнечной энергии в Арктике, что ведет к постепенному сокращению запасов льда в этом регионе: за время полярной ночи намораживается меньше льда, чем тает за время полярного дня.

К середине XX века в Арктике закончились запасы льдов, накопленных во время большого ледникового периода 4️⃣. Вслед за этим началось преобразование многолетних льдов Северного Ледовитого океана в однолетние. Во время полярного дня стала расти площадь и время существования открытой воды. Энергия инсоляции начала расходоваться на таяние льдов и на прогрев воды 5️⃣ в соотношении 25 к 1. К концу XX века это соотношение стало 10 к 1. К середине XXI века оно станет близким к 1 к 1. В результате уже началось, и будет ускоряться, таяние ледников Гренландии.

В наше время, природный тепловой аккумулятор в Арктике продолжает свою работу, но его емкость значительно сократилась. Соответственно уменьшились и его возможности по сдерживанию процесса потепления. Среднегодовая температура в северной зоне полярных суток перестанет быть стабильной. Начинается таяние вечной мерзлоты, что приведет к эмиссии больших объемов парниковых газов. Возможный подъем уровня мирового океана со скоростью до 1 м за 100 лет, приведет к потере 5–7% суши.

Напротив, Антарктика таять не будет. Там в это время наступит дефицит инсоляции и площадь оледенения начнет расти.

Следует учесть, что “за последние 500 млн лет стабильными на больших отрезках времени были только жаркие и холодные периоды. Все остальное время представляет собой непрерывную цепочку переходных процессов. Фрагмент последнего из них, продолжительностью в 10 тыс. лет, выдался особенно удачным. Человек сумел воспользоваться им, чтобы шагнуть из первобытного состояния в современное индустриальное общество. Теперь человечеству предстоит вступить в борьбу с потеплением, сочетая эту нелегкую работу с поиском возможностей приспособления к изменяющимся условиям существования”.

#арктика

Спутник ДЗЗ

18 Nov, 14:46


Дайджест материалов с сотрудниками ИКИ РАН 11.11.2024 — 17.11.2024

〰️ Анатолий Петрукович, директор ИКИ РАН, рассказал Интерфаксу о спаде солнечной активности, о приостановлении работ по созданию космического аппарата «Зонд-М», предназначенного для мониторинга солнечной активности в рамках проекта «Ионозонд», а также о том, что космическая астрофизическая обсерватория«Спектр-РГ» может проработать дольше гарантийного срока:

〰️ Михаил Бурцев, заведующий центром коллективного пользования данными спутникового мониторинга Земли «ИКИ-Мониторинг», в интервью для портала «Научная Россия» описал подробности дистанционного зондирования Земли со спутников

〰️ Натан Эйсмонт, ведущий научный сотрудник отдела космической динамики и математической обработки информации, в подкасте блогера Дениса Царюка ответил на вопросы о космических открытиях, которые изменят мир

Спутник ДЗЗ

18 Nov, 10:40


Список всех данных Google Earth Engine

🖥 В репозитории Earth-Engine-Catalog собран список всех пространственных данных, хранящихся Earth Engine. Список представлен в виде файлов TSV (значения, разделенные табуляцией) или JSON. Обновляется ежедневно.

Учитываются только данные из официального каталога Earth Engine:

📚 Каталог пространственных данных Google Earth Engine

Напомним, что существует еще 🖥 Awesome-gee-community-catalog (https://gee-community-catalog.org/), данные в который добавляются сообществом пользователей Earth Engine.

#данные #GEE

Спутник ДЗЗ

18 Nov, 09:04


🌲Не знаете как защитить свое любимое место около дома или на Природе?

✔️Именно общественный экологический контроль позволяет выявить большее количество правонарушений, увеличивает охват надзора, а соответственно, его эффективность.

🟢«Школа общественных экологических инспекторов» партии «Зеленые» позволяет понять суть природоохранного законодательства и научиться правильно фиксировать нарушения, чтобы передать информацию в контрольный орган.

📗📚Обучение состоит из 44 уроков, поделённых на 7 блоков по отраслям природоохранного законодательства: воздух, вода, обращение с отходами, зелёные насаждения и т.д.

💚После окончания урока необходимо пройти небольшое тестирование по теме, после изучения блока – пройти углубленное тестирование.
По итогам обучения студенты по желанию могут сдать экзамен в Росприроднадзоре и или регионального МинПрироды и получить статус федерального или регионального экологического общественного инспектора.

Чтобы начать обучение, заполните заявку. Обучение в Школе общественных экологических инспекторов бесплатное.

❇️Будьте с нами на связи и получайте самые важные новости!

Спутник ДЗЗ

18 Nov, 07:52


Компания Spire (США) объявила о сделке по продаже своего морского бизнеса за 241 млн долларов бельгийской компании Kpler, специализирующейся на отслеживании морских перевозок.

Продажа позволит Spire выплатить более $118 млн долга и оставить на балансе еще $100 млн.

Kpler получит портфель контрактов на мониторинг морской среды, приносящих около 40 млн долларов в год, а также персонал и интеллектуальную собственность Spire, связанную с этим бизнесом. Спутники, собирающие данные судовых АИС-транспондеров, по-прежнему будут принадлежать и управляться Spire.

Основная часть морского бизнеса была приобретена Spire в 2021 году, вместе с компанией exactEarth, за 161,2 млн долларов.

Источник

Спутник ДЗЗ

17 Nov, 12:45


Microsoft и NASA запускают ИИ-помощника Earth Copilot для облегчения работы с космическими данными

Объем геопространственных данных NASA превышает 100 петабайтов, и ожидается, что в ближайшие годы он увеличится в разы. Эти данные содержат сведения об атмосферных условиях, изменениях в почвенно-растительном покрове, температуре океана и многом другом, но разобраться в них могут только специалисты.

Earth Copilot призван упростить процесс поиска и извлечения информации из данных наблюдения Земли, собранных NASA. Пользователи смогут общаться с Copilot на естественном языке, задавая вопросы вроде как «Как повлиял ураган „Ян“ на остров Санибел?» или «Как пандемия COVID-19 повлияла на качество воздуха в США?». ИИ извлечет соответствующие наборы данных, сделав этот процесс простым и понятным.

В создании Earth Copilot NASA сотрудничает с Microsoft, используя Azure OpenAI для интеграции ИИ в свое хранилище данных.

Сейчас Earth Copilot доступен только для ученых и исследователей NASA, которые оценят возможности инструмента. Затем будут изучать возможность его интеграции в платформу визуализации, исследования и анализа данных NASA — VEDA.

Источник

#ИИ

Спутник ДЗЗ

17 Nov, 10:01


Известия вузов «Геодезия и аэрофотосъемка» № 4, 2024

В журнале Известия вузов «Геодезия и аэрофотосъемка», №4/2024, в рубрике “Аэрокосмические исследования земли, фотограмметрия” опубликованы статьи:

🔹Полтарин В.С., Шинкаренко С.С. Сравнительный анализ методов машинного обучения при картографировании открытых песков и дефлированных пастбищ по спутниковым данным Sentinel-2, С. 17–28.
🔹Керимов И.А., Холопова Е.Ю., Бекмурзаева Л.Р. Оценка динамики лесопокрытых территорий Чеченской Республики (на примере Шатойского района), С. 29–37.

📚 Скачать выпуск в PDF

Журнал издается МИИГАиК и распространяется под лицензией: Creative Commons Attribution 4.0 International (CC BY 4.0)

#журнал

Спутник ДЗЗ

17 Nov, 07:30


Поздравляем коллегу с успешной защитой!

Кроме научных результатов, в диссертационной работе содержится множество актуальных справочных данных. Например, перечень радарных спутников и их характеристик по состоянию на 07.02.2024, очень подробный список литературы и т. п.

Диссертацию можно использовать в качестве учебника по обработке радарных данных и, в частности, по радарной интерферометрии.

Хотелось бы обратить внимание, что в сельскохозяйственном мониторинге, помимо разновременных композитов с участием когерентности, используются также временные ряды когерентности. Истоки этого подхода можно найти в диссертации Engdahl’а (2013 г.), которая автору известна.

#InSAR

Спутник ДЗЗ

16 Nov, 17:19


14 ноября в диссертационном совете МГУ.016.4 состоялась защита кандидатской диссертации ведущего инженера лаборатории аэрокосмических методов кафедры Веры Юрьевны Ширшовой на тему «Методики применения результатов радиолокационной интерферометрии в географических исследованиях (на примере малых арктических островов и Узон-Гейзерной вулкано-тектонической депрессии)» по специальности 1.6.20 - Геоинформатика, картография. Научный руководитель – в.н.с., к.г.н. Елена Александровна Балдина.

Диссертационная работа заключается в разработке и усовершенствовании методик применения радиолокационной спутниковой интерферометрии для изучения географических объектов на примере картографирования современного состояния поверхности малых арктических островов и мониторинга их сезонной динамики, а также выявления изменений высоты земной поверхности на территориях активного вулканизма с учетом природных условий и метеорологической обстановки.

Диссертация вызвала неподдельный интерес у специалистов из самых областей – картографов, геоморфологов, криолитологов. За присуждение учёной степени кандидата географических наук проголосовали все члены диссертационного совета.

Поздравляем Веру Юрьевну и желаем дальнейших успехов на научном поприще!

Спутник ДЗЗ

16 Nov, 11:50


ЛОМО провело испытания элементов системы автоматической фокусировки телескопа. Вибродинамическому и тепловому тестированию подверглись корректор поля, фокальный узел, приемник и излучатель оптико-электронного комплекса высокого разрешения (ОЭК ВР) «Элегия».

«Элегия» входит в состав космических аппаратов дистанционного зондирования Земли «Ресурс-ПМ» — спутников для картографической съемки нового поколения.

В настоящее время на предприятии осуществляют подготовку тестовых образцов излучателя и приемника к ресурсным испытаниям, а также продолжают изготовление составных частей первого опытного образца ОЭК ВР.

Источник

#оптика #россия

Спутник ДЗЗ

16 Nov, 09:39


Слайды из “арктической” части доклада А. А. Емельянова.

Основное внимание, с учетом специфики района наблюдения, уделяется космическим радарам. Здесь можно было бы добавить тепловую инфракрасную съемку в ночное время. Преодолеть облачность она не сможет, но вот разглядеть льды полярной ночью вполне в состоянии.

#арктика

Спутник ДЗЗ

16 Nov, 09:31


Мировые тенденции развития направления ДЗЗ. Российские приоритеты информационного обеспечения задач развития Арктической зоны РФ
Емельянов А.А., АО "Российские космические системы"
Видео, Тезисы

Первые 25 минут получасового доклада посвящены тенденциям развития ДЗЗ. Доклад плотный, предлагаем послушать его полностью.

1️⃣ Мировая группировка спутников ДЗЗ
2️⃣ Основные тренды развития ДЗЗ

Отмечена важность обработки данных на борту спутника, развития методов искусственного интеллекта, оптической межспутниковой связи, автономизации управления космическими аппаратами (КА) и планирования задач на борту, что в перспективе приведет к появлению сетей взаимодействующих автономных КА и доставке данных ДЗЗ из космоса в режиме реального времени. Еще хотелось бы отметить появление гетерогенных группировок ДЗЗ, состоящих из КА, расположенных на орбитах разных типов и использующих разные методы съемки.

3️⃣ Российская орбитальная группировка ДЗЗ

Согласно слайду, в 2024 году планируется запустить оптический КА сверхвысокого разрешения "Ресурс-П" №5, а в 2025 году — два КА "Ресурс-ПМ".

Радарный спутник “Обзор-Р“ планируют запустить в 2025 году, а "Кондор-ФКА" №3 — в 2026 году.

В 2025 году планируется запуск геостационарного гидрометеорологического спутника "Электро-Л" №5 и двух “Метеоров” — “Метеор-М” №2-5 и №2-6.

4️⃣ Развитие российской группировки КА ДЗЗ с учетом коммерческих КА

Несмотря на неопределившийся микрофон, частные группировки видны хорошо.

5️⃣ Российская группировка по спектральном каналам и видам съемки

Отмечается недостаток мультиспектральных данных класса Landsat/Sentinel-2, данных тепловой инфракрасной и гиперспектральной съемки. В последней почему-то не указаны КА “Ресурс-П”, которые ведут подобную съемку.

6️⃣,7️⃣ Сервисы доступа к данным российского ДЗЗ и базовые информационные продукты

#россия

Спутник ДЗЗ

14 Nov, 11:57


Пленарные доклады можно разделить на три части — доклад А.А. Емельянова о тенденциях развития ДЗЗ (мы рассмотрим его позже, а пока можете посмотреть у коллеги), про систему “Арктика-М” и, собственно, про Арктику.

Про Арктику собирались послушать позже. Но, задержавшись на докладах Семенова В.А. и Аванесова Г. А., так и прослушали все до конца. Большое спасибо! Было очень интересно.

Спутник ДЗЗ

14 Nov, 11:53


XXII Международная конференция современные проблемы дистанционного зондирования земли из космоса (2024). Пленарные доклады 11 ноября

Ведущий: Е. А. Лупян, д.т.н., заведующий отделом “Технологий спутникового мониторинга”, руководитель работ ИКИ РАН в области дистанционного исследования Земли из космоса.

🔹17:01 Начало трансляции.
🔹17:24 Приветственное слово А. А. Емельянова, заместителя генерального конструктора АО "Российские космические системы" (2,5 мин.)
🔹20:23 Приветственное слово С. В. Тасенко, директора ФГБУ "НИЦ "ПЛАНЕТА" (1,5 мин.)
🔹23:43 Мировые тенденции развития направления ДЗЗ. Российские приоритеты информационного обеспечения задач развития Арктической зоны РФ. Емельянов А.А., АО "Российские космические системы" (30 мин., в трансляции есть четыре перерыва.)
🔹56:05 Высокоэллиптическая гидрометеорологическая космическая система «Арктика-М». Крамарева Л.С., Научно-исследовательский центр космической гидрометеорологии «Планета» (25 мин.)
🔹1:21:59 Изменения арктических морских льдов в ХХ веке: неопределённость и новые реконструкции. Семенов В.А., Институт физики атмосферы имени А. М. Обухова РАН, Институт географии РАН (28 мин.)
🔹1:50:54 Исследование причин и последствий таяния льдов Арктики. Аванесов Г.А., Институт космических исследований РАН (35 мин.)
🔹2:28:57 Особенности использования данных спутниковой микроволновой радиометрии при изучении арктического ледяного покрова. Алексеева Т.А., Арктический и Антарктический научно-исследовательский институт (ААНИИ), Институт космических исследований РАН (25 мин.)
🔹2:56:08 Дистанционные исследования растительного покрова арктической зоны как индикатора климатических изменений. Елсаков В.В., Институт биологии Коми НЦ УрО РАН (29 мин., окончание отсутствует в трансляции)
🔹3:24:50 Окончание трансляции.

#конференции #арктика #климат

Спутник ДЗЗ

14 Nov, 10:20


Министерство обороны Германии берет на себя расходы по покупке радарных данных ICEYE для Украины

Финский спутниковый оператор ICEYE и немецкий производитель оружия Rheinmetall объявили 11 ноября о подписании контракта на предоставление вооруженным силам Украины снимков, полученных радарными спутниками ICEYE, при финансировании со стороны Министерства обороны Германии. Стоимость контракта не разглашается.

Две фирмы заключили соглашение о сотрудничестве в июне, а в сентябре компания Rheinmetall получила эксклюзивные права на продажу продукции ICEYE “военным и правительственным конечным пользователям” в Германии и Венгрии.

Контракт позволяет использовать возможности всей спутниковой группировки ICEYE. С 2018 года эта компания запустила 38 радарных спутников.

В августе 2022 года, по соглашению с украинским фондом имени Сергея Притулы, ICEYE выделила один из своих спутников для использования украинским правительством. В июле 2024 года ICEYE и правительство Украины подписали новый меморандум о сотрудничестве.

📸 Снимок авиабазы ВВС США “Девис-Монтен” в Тусоне (шт. Техас), сделанный радарным спутником ICEYE.

Источник

#война #SAR #германия #финляндия

Спутник ДЗЗ

14 Nov, 07:48


Классификация сельскохозяйственных культур Канады: карты и набор данных

Canada AAFC* Annual Crop Inventory (2009–2023) — ежегодные карты классификации сельскохозяйственных культур (и не только) Канады с общей точностью не менее 85% и пространственным разрешением 30 м (в 2009 и 2010 годах — 56 м).

🌍 Данные на Earth Engine
🔗 Код примера

*AAFC — Agriculture and Agri-Food Canada

Набор данных о пахотных землях Канады с метками, полученными из Canadian Annual Crop Inventory. Данные содержат 78 536 вручную проверенных изображений высокого разрешения (10 м/пиксель, 640 x 640 м) с географической привязкой из 10 классов сельскохозяйственных культур, собранных за четыре года производства (2017–2020) и пять месяцев (июнь-октябрь). Каждый экземпляр содержит 12 спектральных каналов, RGB-изображение и дополнительные каналы вегетационных индексов. По отдельности каждая категория содержит не менее 4 800 изображений. Открыт доступ к модели и исходному коду, которые дают возможность пользователю предсказать класс культуры по одному изображению (ResNet, DenseNet, EfficientNet) или по последовательности изображений (LRCN, 3D-CNN).

📖 Описание методики
🖥 Репозиторий проекта

#данные #датасет #GEE #сельхоз #нейронки

Спутник ДЗЗ

14 Nov, 06:23


🌍 ХХII международная конференция «Современные проблемы дистанционного зондирования Земли из космоса»
День 4️⃣

Трансляции:

9:00-10:30 Секция R: Бортовая аппаратура космических систем ДЗЗ
Совместная секция ИКИ РАН и НЦ ОМЗ АО «Российские космические системы»

9:20–12:40 Секция В: Технологии и методы использования спутниковых данных в системах мониторинга

9:00–13:00 Секция D: Дистанционные методы исследования атмосферных и климатических процессов

9:00–13:00 Секция F: Методы дистанционного зондирования растительных и почвенных покровов

10:00–12:30 Секции B и F: Конкурс стендовых докладов молодых ученых

10:00–12:30 Секции A, D, E и H: Конкурс стендовых докладов молодых ученых

14:00–17:30 Пленарное заседание, посвященное обсуждению образовательных программ и мероприятий в области ДЗЗ. Награждение победителей конкурса молодых ученых. Закрытие конференции

📹 Плейлист с трансляциями на YouTube
💬 Плейлист с трансляциями в ВК
🔗 Сайт конференции

Спутник ДЗЗ

13 Nov, 10:02


Новости с Восточного

⭐️В конце ноября с космодрома Восточный запустят радарный спутник дистанционного зондирования Земли “Кондор-ФКА” №2.

На стартовом комплексе “Союз” готовят системы и агрегаты к приему ракеты.
 
На техническом комплексе завершена заправка космического аппарата, далее по графику — совместные проверки “Кондора” с разгонным блоком “Фрегат”. 
 
В монтажно-испытательном корпусе специалисты Роскосмоса продолжают подготовку “пакета” ракеты-носителя. Первая и вторая ступень носителя уже собраны и готовы к дальнейшей сборке.

Источник

🗓 На сайте в качестве ориентировочной даты пуска указано 30 ноября.


⭐️На Восточный прибыли составные части ракеты “Союз” для запуска спутника оптико-электронного наблюдения Земли “Аист-2Т”. Основное назначение спутника — стереосъемка земной поверхности.

Специалисты приняли контейнеры с составными частями носителя и готовятся к их разгрузке на складе блоков технического комплекса.

Источник

📸 Фото: Космический центр “Восточный”

#россия

Спутник ДЗЗ

13 Nov, 08:01


Сегодня телеграм-каналу исполняется два года.

Задумывался он как место, куда можно выкладывать всякое любопытное, что сейчас в работе не нужно, а выбросить жалко. Такой себе телеграм-балкон.

Но постепенно мы втянулись и стали писать регулярно. Пишем о том, что волнует — о дистанционном зондировании Земли из космоса. Естественно, это очень узкий взгляд на ДЗЗ, который ни на что не претендует. Но кто-то нас все-таки читает, и мы вам за это благодарны.

Нацеленность канала остается прежней: практичность и воспроизводимость. Хочется, чтобы читатель сам смог получить, обработать и проанализировать нужные ему данные.

Мы пытаемся накапливать информацию. Поэтому: 1) заглядывайте в закреп, 2) в Поиске используйте хештеги.

Для общения/вопросов/критики есть бот обратной связи @sputnikDZZ_bot.

Спасибо, что читаете!

Спутник ДЗЗ

13 Nov, 06:02


🌍 ХХII международная конференция «Современные проблемы дистанционного зондирования Земли из космоса»
День 3️⃣

Трансляции:

9:40–13:00 Секция А: Методы и алгоритмы обработки спутниковых данных

9:20–13:00 Секция В: Технологии и методы использования спутниковых данных в системах мониторинга
14:20–18:20 Секция В: Технологии и методы использования спутниковых данных в системах мониторинга

9:00–13:00 Секция D: Дистанционные методы исследования атмосферных и климатических процессов
14:00–18:00 Секция D: Дистанционные методы исследования атмосферных и климатических процессов

14:00–18:00 Секция Е: Дистанционные исследования Мирового океана

9:00–13:00 Секция F: Методы дистанционного зондирования растительных и почвенных покровов
14:00–18:00 Секция F: Методы дистанционного зондирования растительных и почвенных покровов

9:00–13:00 Секция H: Дистанционные методы исследования в гидрологии суши
14:00–18:00 Секция H: Дистанционные методы исследования в гидрологии суши

9:00–12:40 Секция I: Дистанционные исследования ионосферы
14:00–17:30 Секция I: Дистанционные исследования ионосферы

📹 Плейлист с трансляциями на YouTube
💬 Плейлист с трансляциями в ВК
🔗 Сайт конференции

Спутник ДЗЗ

12 Nov, 17:06


Регистрация на конкурсы программы "Дежурный по планете 2025" закрывается через 3 дня ‼️

Ждем ваши анкеты до 14 ноября - http://spacecontest.ru/go

Успейте подать заявку на направления:

- Космическая робототехника – роверы;
Участники будут решать важную задачу будущего освоения космоса: "Сбор и анализ полезных ископаемых". Командам предстоит спроектировать и разработать навесное оборудование для космического ровера, способное выполнять сложные операции по сбору образцов и проведению их первичного анализа.

- Орбита - Space Pi: прикладные космические системы и управления спутниками;
Участники будут проектировать собственные научные миссии на базе спутников формата CubeSat 3U, интегрировать свои эксперименты в качестве полезной нагрузки на борт спутника, программировать датчики и другие бортовые системы космического аппарата, а затем испытывать действующий прототип аппарата для своей миссии во время запуска в стратосферу на высоте до 24 км.

- Космическая автоматическая идентификация объектов и Искусственный интеллект;
Школьники смогут создать свой собственный сервис для обработки и визуализации спутниковых данных.

- Terra Notum;
Участники получат уникальную возможность испытать себя, собрав команду единомышленников, разработать собственную модель спутника формата CubeSat 3U.

- Цифровой лесничий;
Ребятам предстоит изучить потенциал территории с точки зрения воздействия на климат, дать оценку накопленному запасу углерода и спрогнозировать возможные варианты его накопления.

- Оперативный спутниковый мониторинг;
Ребятам предстоит решение актуальных инженерных задач по созданию реального образца для приёма спутниковых данных, предварительно определив в команде конструктора, радиоинженера, программиста, сборщика-монтажника и администратора проекта и пиар-менеджера.

- Пилотируемая космонавтика. Самарский университет.
Финалисты и призеры трека смогут предложить свои идеи технологий и проектов, востребованных в задачах освоения человеком ближнего космоса. Инженерные аспекты проектов будут испытаны в условиях перегрузок и невесомости во время учебных запусков предоставляемых организаторами ракет на высоту от 1 км.

Спутник ДЗЗ

12 Nov, 14:39


Настоящий дракон.
https://www.youtube.com/watch?v=3iaYyYFicMw

Спутник ДЗЗ

12 Nov, 12:20


Ежегодная национальная база данных почвенно-растительного покрова США (Annual National Land Cover Dataset) появилась на Earth Engine:

🗺 Annual NLCD Land Cover Dataset

В GEE сохранена исходная структура данных: шесть слоев ежегодных растровых данных о почвенно-растительном покрове и его изменениях для континентальной части США за 1985–2023 гг. с пространственным разрешением 30 м.

Слои данных:

🔹 Land Cover
🔹 Land Cover Change
🔹 Land Cover Confidence
🔹 Fractional Impervious Surface: доля непроницаемых поверхностей (0–100%) в 30-метровом пикселе. Позволяет классифицировать городскую застройку и пригороды на основе заданных пороговых значений.
🔹 Impervious Descriptor: различает городские, негородские и дорожные покрытия на застроенных территориях.
🔹 Spectral Change Day of Year: определяют сутки, когда происходят значительные спектральные изменения (значения 1–366), что позволяет выявить нарушения (например, пожары), выходящие за рамки сезонных колебаний.

#GEE #данные #США

Спутник ДЗЗ

12 Nov, 07:20


BlackSky приобрел долю Thales Alenia в совместном предприятии LeoStella

Компания BlackSky стала единственным владельцем производителя малых спутников LeoStella, выкупив 50% акций у Thales Alenia Space. Сделка была завершена 6 ноября, финансовые подробности не разглашаются.

LeoStella производит Gen-3 — новое поколение спутников BlackSky. Эти спутники будут обладать более высоким пространственным разрешением и периодичностью съемки по сравнению с нынешними спутниками Gen-2, а также будут вести съемку в коротковолновом инфракрасном диапазоне и поддерживать межспутниковая связь. Компания предполагает, что базовая группировка будет состоять не менее чем из дюжины таких спутников.

Брайан О'Тул (Brian O’Toole), исполнительный директор BlackSky, сказал, что первый спутник Gen-3 находится на “финальной стадии тестирования”, после чего будет отправлен в Новую Зеландию для запуска ракетой Rocket Lab Electron. Он не сообщил предполагаемую дату запуска спутника.

В 2018 году компания BlackSky, в то время входившая в состав Spaceflight Industries, объявила о создании совместного предприятия LeoStella с Thales Alenia Space в рамках раунда серии С объемом 150 млн долларов. В 2019 году LeoStella открыла завод по производству спутников в пригороде Сиэтла (шт. Вашингтон), на котором изготавливаются спутники BlackSky и других заказчиков.

Хотя LeoStella привлекала к сотрудничеству другие компании, такие как Loft Orbital, и пыталась выйти на оборонные рынки, основным ее заказчиком была компания BlackSky. В пресс-релизе от 24 октября, LeoStella заявила, что на сегодняшний день изготовила 23 спутника, 19 из которых находятся на орбите. Большинство из них предназначены для BlackSky.

Сейчас сайт LeoStella перенаправляет всех на сайт BlackSky, где нет упоминаний о возможностях производства спутников.

📸 Спутниковые платформы, изготовленные LeoStella на заводе в Туквила (Tukwila), штат Вашингтон.

Источник

#США

Спутник ДЗЗ

12 Nov, 06:31


🌍 ХХII международная конференция «Современные проблемы дистанционного зондирования Земли из космоса»
День 2️⃣

Трансляции:

9:00–13:00 Секция А: Методы и алгоритмы обработки спутниковых данных
14:00–17:00 Секция А: Методы и алгоритмы обработки спутниковых данных

9:00–13:00 Секция D: Дистанционные методы исследования атмосферных и климатических процессов

9:00–13:00 Секция E: Дистанционные исследования Мирового океана
14:00–18:00 Секция E: Дистанционные исследования Мирового океана

14:00–18:00 Секция F: Методы дистанционного зондирования растительных и почвенных покровов

9:40–13:40 Секция G: Дистанционные методы в геологии и геофизике
14:20–18:00 Секция G: Дистанционные методы в геологии и геофизике

9:00–13:00 Секция К: Дистанционное зондирование криосферных образований
14:00–18:00 Секция К: Дистанционное зондирование криосферных образований

9:30–13:00 Секция Р: Дистанционное зондирование планет Солнечной системы
14:00–18:00 Секция Р: Дистанционное зондирование планет Солнечной системы

📹 Плейлист с трансляциями на YouTube
💬 Плейлист с трансляциями в ВК
🔗 Сайт конференции

Спутник ДЗЗ

11 Nov, 15:01


Запущены 15 китайских спутников

11 ноября 2024 года в 04:03 всемирного времени с площадки № 130 космодрома Цзюцюань выполнен пуск ракеты-носителя 📸 “Лицзянь-1” (Lijian-1 Yao-5) с 15-ю спутниками:

🔹 Shiyan-26A—C 试验二十六号A—C
🔹 Jilin-1 Gaofen 05B 吉林一号高分05B
🔹 Jilin-1 Pintai 02A03 (Yiyatong) 平台02A03(天智二号C)
🔹 Yunyao-1 31—36 (один из них — Tianzhi-2C) 云遥一号31星—36(其一为怡亚通号)
🔹 Xiguang-1 04 (Quehua-1) 西光壹号04(鹊华一号)
🔹 Xiguang-1 05 (Tianxianpei) 西光壹号05(天仙配号)
🔹 Aman Zhineng Yaogan-1 阿曼智能遥感一号
🔹 Tianyan-24 (Liangping-1) 天雁24(梁平一号)

Космические аппараты успешно выведены на околоземную орбиту. Вот информация о некоторых из них:

🛰 Tianzhi-2C на платформе Jilin-1 02A03, разработан совместно Институтом программного обеспечения Китайской академии наук и компанией Changguang Satellite Technology Co, Ltd. Это спутник оптического наблюдения Земли высокого пространственного разрешения с интеллектуальной обработкой данных на борту и возможностью автономного планирования задач. В качестве “мозга” спутника используется недавно разработанная суперкомпьютерная микросистема Tianzhi.

Tianzhi-2C предназначен для проверки возможности автономного планирования задач на основе бортовой обработки снимков и распознавания целей. Предполагается, что спутник будет поддерживать такие сложные приложения, как интеллектуальное принятие решений на борту и многоспутниковое взаимодействие в условиях будущей крупномасштабной группировки [🔗ссылка].

🛰 Xiguang-1 04 — первый в Китае коммерческий спутник для мониторинга выбросов метана от точечных источников. Сообщается, что спутник оснащен камерами для наблюдения за выбросами метана и солнечно-индуцированной флуоресценции хлорофилла (СИФ), а также мультиспектральной камерой. Сообщается также о высоком пространственном и спектральном разрешениях данных: пространственное разрешение достигает 25 метров, а спектральное — 0,1 нанометра (!). Оператором спутника является компания Zhongke Xingrui [🔗ссылка].

Хотелось бы узнать подробности о “хлорофилльной” камере. Европейский спутник FLuorescence EXplorer (FLEX) планируют запустить в следующем году. Возможно, Xiguang-1 04 — первый спутник, специально предназначенный для мониторинга СИФ.

🛰 Xiguang-1 05 оснащен гиперспектральной камерой высокого разрешения и панхроматической камерой, что позволяет решать такие задачи, как идентификация сельскохозяйственных культур, выявление вредителей и болезней, а также предупреждение о рисках. Предполагается, что спутник будет предоставлять разнообразные услуги, включая сельскохозяйственный мониторинг, разведку полезных ископаемых и экологический мониторинг для провинции Аньхой на востоке Китая [🔗ссылка].

Серия спутников Xiguang-1 разработана компанией Xi'an Zhongke Xiguang Aerospace Technology Co, Ltd.

🛰 Liangping-1 — спутник, разработанный компанией Beijing Juntian Aerospace Technology Co. (далее — Juntian Aerospace). Аппарат предназначен для отработки технологий ДЗЗ и обработки данных на орбите. Он оснащен двумя оптическими камерами высокого разрешения, в том числе, для гиперспектральной съемки. Juntian Aerospace планирует создать на основе Liangping-1 новое поколение недорогих модульных спутников [🔗ссылка].

#SIF #гиперспектр #CH4 #onboard #оптика #китай

Спутник ДЗЗ

11 Nov, 11:01


Дамбы возвращаются

1️⃣ О GlobalDamWatch.org — глобальных данных о расположении плотин написано 🔗здесь. Теперь эти данные появились на Google Earth Engine.

🌍 Данные Global Dam Watch (GDW) v1.0 — это глобальные данные о расположении речных плотин и соответствующих водохранилищ. Данные состоят из двух слоев: 1) координат плотин и 2) полигонов границ водохранилищ. Каждый слой имеет атрибуты, среди которых есть идентификатор пары плотина-водохранилище. Кроме того, координаты дамбы находятся внутри полигона “своего” водохранилища.

Версия 1.0 включает 41 145 точек расположения плотин и 35 295 полигонов водохранилищ. 5 850 плотин не связано с водохранилищами. К ним относятся навигационные шлюзы, отводные заграждения, противопаводковые накопительные плотины, строящиеся плотины без заполненных водохранилищ и т. п.

📖 О методике создания базы данных GDW v1.0

2️⃣ Global Dam Tracker (GDAT) — одна из наиболее полных баз данных по плотинам с географической привязкой, включающая более 35 000 плотин по всему миру. Она содержит координаты, спутниковые данные о водосборных площадях и подробную информацию о таких атрибутах, как год завершения строительства, высота, длина, назначение и установленная мощность (capacity) плотины.

GDAT создана на основе существующих глобальных наборов данных и дополнена региональными данными от правительств, некоммерческих организаций и академических источников, особенно в странах Глобального Юга, где детальные данные часто отсутствуют. Данные охватывают плотины, построенные за последние три десятилетия.

📖 Статья с описанием
🛢 Репозиторий на Zenodo
🌍 GDAT на GEE

#данные #GEE

Спутник ДЗЗ

11 Nov, 09:32


🌍 ХХII международная конференция «Современные проблемы дистанционного зондирования Земли из космоса»
День 1️⃣

Трансляции:

10:00–13:20 Секция А: Методы и алгоритмы обработки спутниковых данных

10:00–12:00 Мастер-класс «Практический опыт применения технологий спутникового мониторинга земель сельскохо­зяйственного назначения в управлении сельскохо­зяйственным производством»

10:00–14:00 Секция D: Дистанционные методы исследования атмосферных и климатических процессов

10:00–14:50 Лекции Школы молодых ученых

14:00 Совместная пресс-конференция «ООО «СИТРОНИКС СПЕЙС» и ИКИ РАН «Новые возможности использования данных с КА «Зоркий-2М» для решения научных задач»

15:00–18:50 Открытие конференции. Пленарное заседание, посвященное изучению Арктики с помощью спутниковых и наземных средств. В ходе заседания будут, в частности, представлены результаты работы высокоэллиптической гидрометеорологической космической системы «Арктика-М», в которую входят два космических аппарата «Арктика-М», выведенные в космос в 2021 и 2023 гг.

📹 Плейлист с трансляциями на YouTube
💬 Плейлист с трансляциями в ВК
🔗 Сайт конференции

Спутник ДЗЗ

11 Nov, 07:31


Космическое командование США расширяет программу обмена разведданными с коммерческими компаниями

Космическое командование США расширило состав участников программы Commercial Integration Cell (CIC) по обмену разведывательной информацией с коммерческими компаниями, добавив в нее пять новых компаний: Blacksky, занимающуюся дистанционным зондированием Земли (ДЗЗ); подрядчика космической разведки Kratos; LeoLabs, которая отслеживает космические объекты; оператора радарных спутников Iceye и поставщика спутниковой связи Telesat.

В ближайшие недели ожидается присоединение к CIC поставщика данных радиочастотного зондирования из космоса Hawkeye 360, а также Exoanalytic Solutions, занимающуюся отслеживанием объектов на орбите.

В CIC также участвуют компании Eutelsat America, Hughes Network Systems, Intelsat General Communications, Iridium Communications, Maxar Technologies, SES Government Solutions, SpaceX, Viasat и XTAR. Таким образом, если раньше членами CIC были в основном операторы спутников связи и ДЗЗ, то теперь в их число входят компании, специализирующиеся на осведомленности об обстановке в космосе (space domain awareness).

CIC создана в 2015 году и, по словам командующего Космическими силами США генерал-лейтенанта Дугласа Шисса (Lt. Gen. Douglas Schiess), “помогает обеспечить осведомленность военных и частных партнеров об угрозах по мере их возникновения”.

CIC работает на базе Космических сил Ванденберг в Калифорнии. Члены CIC должны иметь контракты с Министерством обороны США и персонал с допуском, который может участвовать в обсуждении секретных разведывательных данных.

Источник

#США #война

Спутник ДЗЗ

10 Nov, 09:31


Запущены китайские радарные спутники Hongtu-2 01-04

9 ноября 2024 года в 03:39 всемирного времени с космодрома Цзюцюань ракетой-носителем "Чанчжэн-2С" выведены на орбиту космические аппараты Hongtu-2 (PIESAT-2) 01-04. Эти спутники будут предоставлять услуги коммерческой радарной съемки в X-диапазоне.

Спутники принадлежат компании Zhuzhou Space Interstellar Satellite Technology. Компания планирует создать группировку из 16 радарных спутников, которая должна быть завершена в марте 2025 года двумя последующими запусками. Четыре спутника PIESAT-1 были запущены в марте 2023 года.

PIESAT-1 (Hongtu-1) — первая интерферометрическая радарная спутниковая группировка, состоящая сразу из четырех спутников, размещенных в форме колеса. Роль ступицы исполняет центральный спутник PIESAT-1 A01, а “спицами” являются вспомогательные аппараты PIESAT-1 B01–B03. Основное назначение группировки — картографирование и определение смещений земной поверхности.

Группировка PIESAT является одной из нескольких китайских коммерческих радарных группировок, разрабатываемых в последние несколько лет. Целый ряд компаний стремится предоставлять радарные данные в рамках партнерства между крупными государственными компаниями и новыми коммерческими игроками.

📸 Космические аппараты Hongtu-2 01-04 (источник)

#SAR #китай

Спутник ДЗЗ

10 Nov, 07:30


10 ноября исполняется 100 лет со дня рождения Михаила Фёдоровича Решетнёва — выдающегося отечественного ученого, конструктора и организатора производства систем информационных космических телекоммуникаций и ракетной техники.

В научных работах М.Ф. Решетнёва получила дальнейшее развитие механика движения твёрдого тела относительно центра масс с присоединенными упругими элементами, создана пассивная магнитно-гравитационная система ориентации, исследовано влияние факторов космического пространства на материалы и механику композиционных материалов.

Среди спутников созданных под руководством М.Ф. Решетнёва наиболее значительными явлениями стали системы спутниковой связи и вещания "Стрела-1" (1964), "Молния-1+" (1967), "Стрела-1М" (1969), "Стрела-2" (1970), "Молния-2" (1971), "Молния-3" (1974), спутник связи "Радуга" (1975), геостационарный спутник прямого телевещания "Экран" (1976), геостационарный спутник связи "Горизонт" (1978), спутник "Радио" (1981), геостационарный спутник-ретранслятор "Поток" (1982), спутники связи "Молния-1Т" (1983) и "Стрела-3" (1985), геостационарный спутник связи "Луч" (1985), военный спутник связи "Радуга-1" (1989), спутник глобальной связи "Гонец-Д1" (1992), геостационарный спутник связи "Экспресс" (1994).

М.Ф. Решетнёв внёс вклад в создание орбитальных группировок спутниковых систем навигации "Циклон" (1967), "Цикада" (1976), "Надежда" (1982), "ГЛОНАСС" (1982) и "Галс" (1994), а также в создание спутниковых систем изучения Земли — геодезических и научно-исследовательских спутников "Вертикальный космический зонд" (1967), "Сфера" (1968), "Ионосферная станция" ("Космос-381", 1970), "Гео-ИК" (1981), "Эталон" (1989).

М.Ф. Решетнёв оказал значительное влияние на создание сибирской научной школы, объединив вокруг себя талантливых учёных, инженеров, разработчиков ракетно-космической техники. Под его руководством была создана материально-техническая база создания новой техники в Сибири с уникальными лабораториями по исследованию и отработке сложных систем и конструкций. Возглавляемое Решетнёвым НПО прикладной механики (ныне АО “Информационные спутниковые системы имени академика М. Ф. Решетнёва”) стало основным отечественным разработчиком и производителем спутников связи, телевещания, навигации и геодезии, и остаётся таковым по сей день.

#история

Спутник ДЗЗ

09 Nov, 14:00


Вчера, 8 ноября 2024 года, произошло радостное событие для команды проекта «Школьный космический телескоп» (ШКТ). После долгих проб и ошибок команде центра управления полетами, подольской школы № 29 им. П. И. Забродина наконец удалось сделать снимок Луны с помощью низкоорбитального «УМКА-1» RS40S c оптическим телескопом в качестве полезной нагрузки, запущенного по программе 🚀 «Space-π»

Со стороны может показаться, что это легко: рассчитать, загрузить, снять, скачать — и всё! Однако «УМКА», несмотря на свою внешнюю мимимишность, может быть довольно капризным. Иногда возникают технические проблемы, такие как программный сбой работы камеры, из-за чего телескоп делает снимок-«пустышку» без какой-либо полезной информации — «серый квадрат».

Все эти трудности являются результатом мелких ошибок и недочетов, которые были допущены во время работы со спутником ещё на Земле. Однако эти допущенные ошибки и возникшие трудности стали ценным опытом для будущих проектов нашей команды, и я горжусь ребятами.
​Я помню, как ребята работали над полезной нагрузкой днями и ночами.

Кроме того, в команде ШКТ произошло небольшое пополнение, и школьники обучаются управлению спутником МКА «УМКА-1». Этот процесс не менее важен, чем сама съёмка с телескопа. Я надеюсь, что рычаги управления спутником следующего этапа проекта ШКТ будут полностью в руках младших товарищей нашей команды, включая «рубильник с SSTV».

Также команда ШКТ выражает признательность специалистам компании 🛰 «СПУТНИКС», которые всегда помогали и подсказывали решения при возникновении сложностей. То, что «УМКА-1» на орбите радует радиолюбителей своей активностью, во многом и их заслуга.

Фотография Луны со спутника МКА «УМКА-1» RS40S была сделана по заданному расписанию во время пролета над Южным океаном в 06:49:40 UTC 8 ноября. Теперь «УМКА-1» полностью оправдал своё название «школьный космический телескоп», а впереди ещё много работы.

73!

Спутник ДЗЗ

09 Nov, 13:10


На Камчатке продолжается извержение вулкана Шивелуч

Пароксизмальное извержение вулкана произошло 7 ноября 2024 года в 9:00–9:30 всемирного времени. Максимальная высота пепловых выбросов составила около 15 км над уровнем моря.

Роскосмос показал замечательные снимки, сделанные 7 ноября спутниками “Арктика-М” и “Метеор-М”.

📸 На снимке, сделанном 7 ноября прибором OLCI спутника Sentinel-3 (естественные цвета), облако пепла относит к востоку.

🖥 Код примера

Следить за извержением вулкана удобно на тг-канале Камчатский филиал ФИЦ ЕГС РАН, а также на NASA Worldview.

#снимки #вулкан #sentinel3 #GEE

Спутник ДЗЗ

09 Nov, 09:31


Метод пространственной интерполяции глобальной цифровой модели рельефа

Интерполяция пространственных данных — это процесс оценки значений в точках, где данные отсутствуют, на основе известных значений в других точках.

📖 В работе (Huo et al, 2024) предлагается метод пространственной интерполяции цифровой модели рельефа (ЦМР). Интерполяция ЦМР рассматривается как разновидность генерации изображений, где на вход подается изображение ЦМР с недостающими значениями, а на выходе получается полное изображение ЦМР.

Для генерации изображений используются методы глубокого обучения. Однако для них нужно большое количество данных. В то же время, данные ЦМР могут быть ограничены правилами защиты конфиденциальности. Решение предлагает метод Federated Learning (FL), в котором, в отличие от централизованного обучения, модель обучается на устройствах, разбросанных по разным географическим точкам, при этом обеспечивается эффективная защита конфиденциальности локальных данных.

В работе предложена модель интерполяции ЦМР на основе FL и многомасштабной сети U-Net. Экспериментальные результаты 📊 показали (Ours — предлагаемый метод), что по сравнению с традиционными методами (кригинг и метод обратных взвешенных расстояний) предложенная модель имеет более высокую скорость обработки и точность интерполяции. Кроме того, результаты исследования дают новый способ эффективного и безопасного использования информации о местности, в случаях, когда предъявляются строгие требования к конфиденциальности данных ЦМР.

📖 Huo, Z., Wen, J., Li, Z., Chen, D., Xi, M., Li, Y., & Yang, J. (2024). Spatial interpolation of global DEM using federated deep learning. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-72807-z

#DEM

Спутник ДЗЗ

09 Nov, 07:20


Maxar Intelligence продала радарный бизнес компании ARKA Group

Компания Maxar Intelligence продала небольшую часть своего бизнеса, ориентированную на поддержку секретных правительственных программ США по созданию датчиков ДЗЗ, компании ARKA Group. Речь идет о группе Maxar по радарным и сенсорным технологиям (Radar and Sensor Technology group, RST), расположенной в Ипсиланти* (шт. Мичиган). Эта группа обладает большим опытом поддержки правительственных программ США по созданию радаров.

Представитель Maxar Intelligence заявил, что “радарные данные по-прежнему является важной частью нашей дорожной карты коммерческих продуктов” и что партнерство с Umbra остается в фокусе внимания компании.

Компания Umbra является коммерческим поставщиком радарных снимков. Maxar интегрирует радарные данные от Umbra с собственными данными оптико-электронного наблюдения.

ARKA собирается преобразовать RST для выполнения своих программ, ориентированных на методы дистанционного зондирования (в том числе, радарные), индикацию движущихся целей и другие виды геопространственной разведки. Индикация движущихся целей — это методы обнаружения и отслеживания движущихся объектов с помощью радаров.

ARKA Group — поставщик военно-космических решений с 60-летним стажем. Компания базируется в Дэнбери (шт. Коннектикут). В июне нынешнего года она объявила о значительном расширении своего производственного комплекса в Дэнбери, ориентированного на производство малых спутников, полезных нагрузок и оптических покрытий. Предприятие производит субметровые телескопы и полезные нагрузки, используемые для наблюдения за объектами в космосе.

Источник

*Город назван в честь Деметриоса (Дмитрия Константиновича) Ипсиланти (1793—1832), офицера русской службы и героя войны за независимость Греции.

#SAR #США

Спутник ДЗЗ

08 Nov, 13:35


Батиметрия по снимкам Landsat

Ученые из Геологической службы США разработали новый способ измерения глубины океана (батиметрии) в мелководных прибрежных зонах по снимкам спутников Landsat.

На мелководье солнечный свет проникает в воду и отражается от морского дна. Это позволяет ученым соотнести “увиденный” спутником отраженный свет с глубиной воды. Сложность спутниковой батиметрии обусловлена тем, что измеренное излучение является результатом сложного взаимодействия физических факторов, в основном, оптических свойств воды, отражательной способности дна и глубины. Расчеты довольно просты для прозрачной воды и чистого дна, но становятся гораздо сложнее, если свет, например, взаимодействует с планктоном в толще воды или с покрытым травой морским дном.

Физическое моделирование оптически доминирующих компонентов, таких как растворенное в воде органическое вещество, фитопланктон и взвешенные частицы, позволили ученым инвертировать коэффициенты ослабления воды и получить метод определения глубины, работающий без внешней калибровки (хотя его можно уточнить, включив батиметрические измерения из других источников). Компромисс заключается в том, что модель учитывает оптические свойства обычных компонентов океана, таких как фитопланктон и взвешенные частицы в толще воды, а также трава или песок на морском дне. Но если присутствуют необычные компоненты, такие как цветение определенного вида фитопланктона или редкий вид темного вулканического морского дна, точность модели снижается.

В прозрачной воде удалось составить карту глубин, превышающих 20 метров, что гораздо глубже, чем ожидали ученые.

📸 Карты вы сами посмотрите в статье, а мы покажем снимок коралловых рифов Флорида-Кис (Florida Keys), которые послужили одним из тестовых участков данного исследования. Снимок сделан 22 февраля 2024 года спутником Landsat 8 (естественные цвета).

📖 Kim, M., Danielson, J., Storlazzi, C., & Park, S. (2024). Physics-Based Satellite-Derived Bathymetry (SDB) Using Landsat OLI Images. Remote Sensing, 16(5), 843. https://doi.org/10.3390/rs16050843

#вода #снимки #океан

Спутник ДЗЗ

08 Nov, 09:40


Simera Sense и VITO заключили соглашение о партнерстве

Компания Simera Sense (Бельгия), занимающаяся разработкой приборов для дистанционного зондирования Земли, и бельгийский исследовательский институт VITO объединили усилия для сокращения задержек при преобразовании сырых спутниковых данных в данные, пригодные для анализа (analytics-ready data).

В настоящее время на орбите находятся 20 оптических полезных нагрузок, https://simera-sense.com/products/ изготовленных Simera Sense. Еще 40 готовы к запуску, и еще 70 будут произведены в течение следующих 12 месяцев. Кроме штаб-квартиры в Бельгии, основанная в 2018 году Simera Sense, имеет офисы в Южной Африке, Тулузе и Глазго.

VITO Remote Sensing играет ключевую роль в нескольких международных проектах, включая Инициативу ESA по изменению климата (CCI) и наземную службу Copernicus. Благодаря передовым методам калибровки и обработки данных, VITO ежедневно обрабатывает более 10 терабайт данных ДЗЗ, предоставляя сведения о климате и окружающей среде более чем 200 странам.

Таким образом, новое партнерство объединяет высокопроизводительные системы формирования изображений Simera Sense и опыт VITO Remote Sensing в области обработки спутниковых данных, особенно на рынке малых спутников.

Источник

#бельгия

Спутник ДЗЗ

08 Nov, 08:20


Австрийская компания iSEE открыла филиал в США

Австрийская компания iSEE Global, специализирующаяся на наблюдении за обстановкой в космосе, открыла американский филиал в Арлингтоне (шт. Вирджиния), во главе с бывшим генеральным директором Kleos Space Энди Боуйером (Andy Bowyer).

Американский филиал необходим iSEE для “близости к ключевым правительственным и оборонным клиентам, таким как Космические силы США, и крупным коммерческим клиентам”, — сообщил Боуйер. “США — самый большой и влиятельный рынок SDA [осведомленности об обстановке в космосе]”.

Основанная в 2023 году компания iSEE, название которой расшифровывается как Impact Space Expedition & Exploration, разрабатывает “орбитальную группировку радаров, которая обеспечит непрерывный высокоточный мониторинг космического пространства”, — сказал Боуйер. “Эта радарная сеть призвана обеспечить комплексное отслеживание практически всех объектов на низкой околоземной орбите в режиме, близком к реальному времени”.

Источник

#австрия #США #SSA

Спутник ДЗЗ

08 Nov, 07:19


🗓11 ноября 2024 г. в ИКИ РАН состоится совместная пресс-конференция «ООО «СИТРОНИКС СПЕЙС» и ИКИ РАН «Новые возможности использования данных с КА «Зоркий-2М» для решения научных задач», посвященная заключению соглашение о проведении пилотного проекта по оценке возможностей использования данных с космического аппарата (КА) «Зоркий-2М» для решения научных задач.

Мероприятие состоится в рамках двадцать второй международной конференции «Современные проблемы дистанционного зондирования Земли из космоса».

🛰В ходе пресс-конференции «Ситроникс Спейс» представит информацию о текущем состоянии группировки КА «Зоркий-2М», опыте ее эксплуатации и перспективах развития. ИКИ РАН представит информацию о ЦКП «ИКИ-Мониторинг», опыте его использования и перспективах развития.
Стороны подпишут соглашение и ответят на вопросы о планируемом сотрудничестве
Также будет объявлено о планах проведения конкурса на лучшую научную работу с использование данных спутника «Зоркий-2М».

В пресс-конференции примут участие:
〰️ от «СИТРОНИКС СПЕЙС»: Генеральный директор Черенков Павел Геннадьевич, Первый заместитель генерального директора Элердова Милана Александровна
〰️ от ИКИ РАН: директор ИКИ РАН Петрукович Анатолий Алексеевич, руководитель работ ИКИ РАН в области исследования Земли из космоса Лупян Евгений Аркадьевич.

📍 Место: ИКИ РАН, ул. Профсоюзная, 84/32, подъезд А-4, Центр отображения (2 этаж)
🕑 Время: 11 ноября 2024 г., начало в 14:00
❗️ Просим представителей СМИ, желающих посетить пресс-конференцию, прислать свои данные (ФИО и название издания, которое Вы представляете) по электронной почте [email protected] до 14:00 8 ноября 2024 г.

Спутник ДЗЗ

07 Nov, 16:40


Данные зонда Juno

Снимки Юпитера, сделанные космическим зондом Juno, полезны для популяризации науки, сообщил ТАСС астрофизик, академик Российской академии наук Дмитрий Бисикало. "Открытый доступ к снимкам позволяет любителям астрономии и художникам со всего мира обрабатывать и изучать изображения Юпитера, делая космос ближе к широким массам", — сказал он.

🛢Данные Juno

Здесь не только полюбившиеся многим снимки камеры JunoCam, но и данные приборов:

* Microwave Radiometer (MWR)
* Ultraviolet Imager/Spectrometer (UVS)
* Jovian InfraRed Auroral Mapper (JIRAM)
* Gravity Science Experiment
* Stellar Reference Unit
* Flux Gate Magnetometer (FGM)
* Jupiter Energetic Particle Detector Instrument (JEDI)
* Jupiter Auroral Distributions Experiment (JADE)
* Radio/Plasma Wave Experiment (WAVES)

📹 Медиагалерея миссии Juno
📸 Фотожурнал миссии Juno

📸 Облака на Юпитере, 19 июля 2024 года

#снимки #данные

Спутник ДЗЗ

07 Nov, 09:31


XX Международная научная Школа-конференция молодых ученых по фундаментальным проблемам дистанционного зондирования Земли из космоса

🛰11 ноября в рамках XXII международной конференции «Современные проблемы дистанционного зондирования Земли из космоса» пройдет XX Международная научная Школа-конференция молодых ученых по фундаментальным проблемам дистанционного зондирования Земли из космоса.

Школа будет работать в онлайн и очном форматах, в Выставочном зале ИКИ РАН (1-й этаж) с 10:00 до 14:50.

Ведущие: проф. Сергей Александрович Барталев, доц. Митягина Марина Ивановна.

Лекции:

🔹Балашов И.В., Бурцев М.А., Константинова А.М., Лупян Е.А., Прошин А.А., Толпин В.А. Построение информационных систем дистанционного мониторинга Земли (Институт космических исследований РАН, Москва, Россия)
🔹Чернокульский А.В. Опасные атмосферные конвективные явления в России в условиях изменений климата (Институт физики атмосферы им. А.М. Обухова РАН, Москва, Россия)
🔹Шинкаренко С.С. Опыт интеграции наземных измерений и данных дистанционного зондирования для определения структурных характеристик растительности аридных ландшафтов (Институт космических исследований РАН, Москва, Россия)
🔹Кубряков А.А., Станичный С.В. Динамика океана и её влияние на морские экосистемы по данным дистанционного зондирования (Морской гидрофизический институт РАН, Севастополь, Россия)
🔹Плотников Д.Е. До верхнего уровня с нуля: эволюция методов обработки спутниковых данных в контексте создания продуктов для российских приборов серии КМСС (Институт космических исследований РАН, Москва, Россия)
🔹Кучма М.О. Школа молодых ученых — отличная возможность получить ценные знания и навыки (Дальневосточный центр ФГБУ "НИЦ "Планета", Хабаровск, Россия)

📝Расписание лекций Школы молодых ученых

#конференции

Спутник ДЗЗ

07 Nov, 08:29


XXII международная конференция «Современные проблемы дистанционного зондирования Земли из космоса»

🗓11–15 ноября 2024 года в ИКИ РАН состоится двадцать вторая международная конференция «Современные проблемы дистанционного зондирования Земли из космоса (Физические основы, методы и технологии мониторинга окружающей среды, потенциально опасных явлений и объектов)».

Темы конференции включают разнообразные аспекты изучения Земли и других планет из космоса — от исследования отдельных объектов и процессов до особенностей работы с большими и сверхбольшими архивами данных.

🛰11 ноября конференцию откроет первое пленарное заседание, посвященное изучению Арктики с помощью спутниковых и наземных средств. В частности, будут представлены результаты работы высокоэллиптической гидрометеорологической космической системы «Арктика-М».

В этот же день в очном и онлайн-форматах будут проходить XX Международная научная Школа-конференция молодых ученых по фундаментальным проблемам дистанционного зондирования Земли из космоса и мастер-класс «Практический опыт применения технологий спутникового мониторинга земель сельскохо­зяйственного назначения в управлении сельскохо­зяйственным производством».

👨🏻‍🏫 12–14 ноября работа конференции будет проходить по секциям:

🔹A. Методы и алгоритмы обработки спутниковых данных
🔹B. Технологии и методы использования спутниковых данных в системах мониторинга (3 заседания)
🔹D. Дистанционные методы исследования атмосферных и климатических процессов
🔹E. Дистанционные исследования водных объектов
🔹F. Методы дистанционного зондирования растительных и почвенных покровов
🔹G. Дистанционные методы в геологии и геофизике
🔹H. Дистанционные методы исследования гидрологии суши
🔹I. Дистанционное зондирование ионосферы
🔹K. Дистанционное зондирование криосферных образований
🔹P. Дистанционное зондирование планет Солнечной системы
🔹R. Бортовая аппаратура космических систем ДЗЗ

🌏 14 ноября состоятся второе пленарное заседание, посвященное обсуждению образовательных программ и мероприятий в области ДЗЗ, и награждение победителей конкурса молодых ученых.

📡15 Ноября состоится выездное заседание в НЦ ОМЗ на тему "Российская космическая система ДЗЗ"

🔗 Сайт конференции

#конференции

Спутник ДЗЗ

07 Nov, 06:17


Когда я
итожу
то, что прожил,
и роюсь в днях —
ярчайший где,
я вспоминаю
одно и то же —
двадцать пятое,
первый день.

Владимир Маяковский
1925 год

Спутник ДЗЗ

06 Nov, 13:02


🔎 Google Dataset Search (https://datasetsearch.research.google.com/) — поисковая система от Google, которая помогает исследователям искать в Интернете данные, находящиеся в свободном доступе.

Успех поиска данных в значительной степени зависит от использования поставщиками данных метаданных, соответствующих стандартам консорциума schema.org. Руководство для поставщиков данных находится 🔗 здесь.

Поиск данных может фильтровать результаты по типу данных, например, по изображениям или тексту. Поиск доступен в мобильных устройствах.

Google Dataset Search дополняет Google Scholar (https://scholar.google.com), поисковую систему компании для академических исследований и отчетов.

#справка

Спутник ДЗЗ

06 Nov, 11:13


Первые сигналы со всех 16 запущенных МКА проекта Space-π получены!🛰

Телеметрию принимают наземные станции сетей «Эфир» и «СОНИКС». У аппаратов начинается этап тестирования и ввода в эксплуатацию.

Поздравляем всех с успешным включением спутников. Верим в их красивое научное и полезное будущее! Удачи в работе!🤗

Спутник ДЗЗ

06 Nov, 10:01


Работа с элементами SpatVector

При работе с векторными данными в terra многие задачи не требуют особых пояснений, потому что решаются теми же функциями, которые использовались для растровых данных, или даже функциями из “базового” R*.

Рассмотрим несколько примеров.

1️⃣ Определим число элементов векторных данных. Сначала создадим тестовый SpatVector из данных, поставляемых вместе с пакетом:

library(terra)

v <- vect(system.file("ex/lux.shp", package="terra"))

v
# class : SpatVector
# geometry : polygons
# dimensions : 12, 6 (geometries, attributes)
# extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
# source : lux.shp
# coord. ref. : lon/lat WGS 84 (EPSG:4326)
# names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
# type : <num> <chr> <num> <chr> <num> <int>
# values : 1 Diekirch 1 Clervaux 312 18081
# 1 Diekirch 2 Diekirch 218 32543
# 1 Diekirch 3 Redange 259 18664


Вектор** v содержит 12 элементов и 6 атрибутов (переменных):

names(v)
# [1] "ID_1" "NAME_1" "ID_2" "NAME_2" "AREA" "POP"


Число элементов v можно подсчитать функциями:

length(v)
nrow(v)


2️⃣ Добавление атрибута в вектор. Создавать векторные данные с заданным набором атрибутов мы умеем. Теперь добавим атрибут к уже имеющимся данным.

Добавим идентификаторы, равные номеру элемента в векторе. Сделаем это двумя способами:

v[["ID_new_1"]] <- 1:nrow(v)
v$ID_new_2 <- seq.int(nrow(v))


3️⃣ Получение координат элементов (геометрии). Координаты элементов векторов без атрибутов возвращает функция geom:

geom(v)
# geom part x y hole
# [1,] 1 1 6.026519 50.17767 0
# [2,] 1 1 6.031361 50.16563 0
# [3,] 1 1 6.035646 50.16410 0
# [4,] 1 1 6.042747 50.16157 0
# [5,] 1 1 6.043894 50.16116 0
# ...


На выходе получается матрица значений координат. Или вектор (просто vector), или список, или таблица — в зависимости от настроек функции, которых очень много.

4️⃣ Конвейер функций. Конвейерная обработка функций в R (|>) встроена в язык, начиная с версии R 4.1.0. Конвейер принимает вывод одной функции и передает его в другую функцию в качестве аргумента. Иногда это делает процесс обработки данных более наглядным.

Например, вместо

v <- vect(system.file("ex/lux.shp", package="terra"))


мы могли бы записать

v <- system.file("ex/lux.shp", package="terra") |>
vect()



* Разумеется, речь идет о перегрузке функций, точнее о перегрузке методов классов Spat* пакета terra.
** Для краткости, здесь мы называем векторные данные просто векторами.

#R

Спутник ДЗЗ

06 Nov, 07:37


Индонезия и Китай подписали меморандум о взаимопонимании по созданию группировки спутников ДЗЗ

Национальное агентство исследований и инноваций Индонезии (BRIN) и Инновационная академия микроспутников Китайской академии наук (IAMCAS) подписали меморандум о взаимопонимании по созданию спутниковой группировки дистанционного зондирования Земли (ДЗЗ).

Меморандум предполагает создание группировки из 19 спутников с оптическими и радарными датчиками для военных и гражданских целей.

В рамках сотрудничества с Китаем BRIN будет помогать разрабатывать спутники и передавать их производство частному сектору. BRIN также будет выступать в качестве поставщика спутниковых данных.

Источник

#индонезия #китай

Спутник ДЗЗ

05 Nov, 16:08


🌍 Запуск 28 спутников, созданных СПУТНИКС, состоялся на космодроме «Восточный» сегодня, 5 ноября, на ракете-носителе «Союз-2.1б» в рамках миссии по запуску аппаратов "Ионосфера-М" № 1 и № 2.

Мы получили телеметрические сигналы после вывода новой партии из 24 космических аппаратов SITRO-AIS и 4 спутников, созданных в рамках научно-образовательного проекта Space-π.

🛰️ Все 28 КА были приняты на управление!

Поздравляем всех причастных с успешным запуском🚀

Спутник ДЗЗ

05 Nov, 13:18


⚡️⚡️⚡️⚡️⚡️⚡️ Все пять кубсатов на базе платформы «Геоскан 3U» успешно выведены на орбиту

Станции открытых сетей наземных станций СОНИКС и SatNOGS приняли первые сигналы с МКА RTU MIREA1, TUSUR GO, HORIZON, COLIBRI-S, VIZARD-ION. Это означает, что антенны на спутниках раскрылись и приемопередатчики работают в нормальном режиме. Работа с кубсатами продолжается через центр управления полетами Геоскана.

Станции сетей продолжают мониторинг этих аппаратов, а также многих других спутников этого запуска.

Спутник ДЗЗ

05 Nov, 09:01


Spire Global и OroraTech создадут систему мониторинга лесных пожаров из космоса

Лаборатория реактивного движения NASA заключила контракт с компанией Spire Global (США) на разработку космических средств раннего обнаружения и мониторинга лесных пожаров. Spire объявила, что для разработки решения будет сотрудничать с немецкой компанией OroraTech.

OroraTech обладает опытом в области теплового инфракрасного зондирования для раннего обнаружения лесных пожаров. Недавно компания завершила раунд финансирования, получив 27 миллионов долларов инвестиций. OroraTech эксплуатирует тепловые инфракрасные датчики, размещенные на спутниках, разработанных и изготовленных компанией Spire.

По условиям контракта Spire и OroraTech должны разработать недорогое космическое решение для мониторинга районов США, подверженных лесным пожарам. В 2023 году они получили контракт от Канадского космического агентства на подготовительные работы по созданию специальной спутниковой группировки для мониторинга лесных пожаров в Канаде.

OroraTech основана в 2018 году. Имеет штаб-квартиру в Мюнхене (Германия), а также представительства в Канаде, Бразилии, Австралии и Греции. В штате более 110 специалистов.

🗺 Карта распространения пожара на острове Родос (Греция) по данным OroraTech (источник).

#германия #США #канада #LST

Спутник ДЗЗ

01 Nov, 13:34


Наводнение в Валенсии [ссылка]

Масштабное наводнение в городе Валенсия (Испания) и его окрестностях показано на 1️⃣ снимке спутника Landsat 8, сделанном 30 октября. В некоторых районах провинции Валенсия за сутки выпало более 300 миллиметров осадков. Паводковые воды заполнили русло реки Турия (Turia), впадающей в Балеарское море (часть Средиземного), и прибрежные водно-болотные угодья Л'Альбуфера (L’Albufera) к югу от города.

Для сравнения, на снимке 2️⃣ (Landsat 8, 25 октября 2022 года) показан тот же район в обычном для этого времени года состоянии.

#снимки #наводнение

Спутник ДЗЗ

01 Nov, 12:01


В начале октября вышло большое интервью гендиректора “Агата” Никиты Казинского, где затрагиваются вопросы государственно-частного партнерства в космосе. Вот фрагмент интервью, касающийся формирования рынка данных ДЗЗ.
________

— С 1 января будущего года ожидается вступление в силу закон о коммерциализации рынка космических услуг. Как вы оцениваете перспективы появления в России рынка спутниковых данных? Можно, хотя бы приблизительно, оценить его объемы в деньгах?

— Появление такого закона оцениваю очень положительно. Речь идет о монетизации данных дистанционного зондирования Земли и платности сервисов на их основе. Пока что данные ДЗЗ у нас бесплатные, и обмен продуктом космической деятельности происходит между создателями за бюджетные средства спутников и бюджетными же потребителями спутниковой информации. Рынок замкнут. Частный инвестор не может вкладываться в систему ДЗЗ или в космический спутник мониторинга Земли, потому что рынка не существует.

В этом смысле монетизация данных ДЗЗ — это очень хорошая мера. Она позволяет не только Роскосмосу по-другому взглянуть на потребности, спрос и на орбитальную группировку, но и привлечь частные инвестиции. А потребители в лице федеральных и региональных органов исполнительной власти, когда данные становятся платными, станут генерировать адекватный, не завышенный спрос на них.

Что касается будущих объемов рынка, то мировой рынок данных ДЗЗ, по большому счету, сформирован американскими операторами. Самый известный — Maxar. Он к 2040 году прогнозирует свои продажи на уровне $4 млрд в год. Это не очень много. Мировой рынок геоинформационных услуг, построенный на данных ДЗЗ, в два-три раза больше. Европейцы, например, пошли по пути создания программы «Коперник» — предоставления данных бесплатно только ради развития рынка геоинформационных услуг. Если у нас закон о платности данных ДЗЗ охватит все категории потребителей, то его годовой объем может достигнуть 200 млрд рублей. Если не будет охватывать всех, и заработает, условно говоря, американская модель (у них скорее гибрид между бесплатным государственным потреблением по фьючерсным контрактам и частного потребления), то российский рынок будет в районе 20–40 млрд рублей в год.

— Вы выступаете за то, чтобы все потребители, включая государственных, платили за спутниковые данные?

— Конечно. Платность — это не только про деньги. Одновременно вводится прозрачность оборота спутниковых данных. Мне кажется, это очень хорошо.

— Какое время займет становление рынка данных ДЗЗ, когда он заработает?

— Это займет не десятки лет, 3-4 года может занять, максимум пять. <…>

— Что касается закона о коммерциализации спутниковых данных. Частные игроки уже высказывают опасения, не станет ли Роскосмос монополистом на этом рынке и будет диктовать всем прочим условия по цене. Можете их успокоить?

— Когда общаемся с частными компаниями, выходящими с инициативой создания спутников и монетизации данных, там два обычно вопроса возникает. Первое, что Роскосмос им будет не доплачивать. Здесь надо отдать должное руководству Роскосмоса: Юрий Иванович Борисов жестко сказал, что мы будем идти от рынка, и вся методология ценообразования будет построена от рыночной стоимости данных, не от традиционных расчетных калькуляционных материалов. Этот механизм отвергнут.

Второй вопрос, что Роскосмос станет монополистом — он достаточно специфичный. Речь на самом деле не о монополии, а о боязни конкуренции со стороны предприятий Роскосмоса. Было бы странно, если бы частники говорили: «Вы не имеете права делать то же самое, что мы». Мне кажется, что как раз это тезис не проходит антимонопольную проверку. Есть, конечно, вероятность того, что госкорпорация будет делать те же спутники ДЗЗ лучше, дешевле и быстрее. Так это же хорошо для страны! А если частники будут делать лучше и быстрее, то тоже для страны хорошо. Не конкурировать с другими производителями Роскосмос не может.

Спасибо коллеге за наводку!

#россия

Спутник ДЗЗ

01 Nov, 10:27


Обзор методов машинного обучения для оценки урожайности сельскохозяйственных культур по данным Sentinel-2

В 📖 статье рассматриваются исследования последних пяти лет, в которых использовались снимки Sentinel-2 и методы машинного обучения для оценки урожайности пшеницы, кукурузы, риса и других культур. Обсуждается применение различных методов, таких как “случайный лес”, SVM, CNN, а также ансамблей методов, для уточнения прогнозов урожайности.

Результаты показывают рост числа применений данных Sentinel-2 для прогноза урожайности, а также тенденцию к применению более продвинутых методов машинного обучения (переход от случайного леса к нейронкам). Отмечено, что разные исследователи используют различные комбинации спутниковых данных, вегетационных индексов и методов машинного обучения для схожих культур, что приводит к разным результатам, которые зачастую не удается сравнить между собой.

📖 Aslan, M. F., Sabanci, K., & Aslan, B. (2024). Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey. Sustainability, 16(18), 8277. https://doi.org/10.3390/su16188277

📊 Количество исследований, связанных с Sentinel-2, в базе Web of Science по годам.

#сельхоз #sentinel2

Спутник ДЗЗ

01 Nov, 08:35


Космические и суборбитальные запуски с января по октябрь 2024 года

Спутник ДЗЗ

01 Nov, 08:31


Список космических и суборбитальных запусков в октябре 2024 года [источник].

#справка

Спутник ДЗЗ

01 Nov, 07:02


🙏Благодарим, расположив в календарном порядке, телеграм-каналы, делавшие репосты и цитировавшие наши публикации в октябре 2024 года:

* @gis_proxima
* @sergeyshakhmatov
* @IngeniumNotes
* @ykuthydromet
* @control_space_channel
* @rscc_rscc
* @dobriy_ovchinnikov
* @space78125
* @twrussia
* @UzbekistanTtransparentWorld
* @grishkafilippov
* @realprocosmos
* @igce01
* @newspacecorp
* @Cosmonaut_without_a_spacesuit
* @solar_lunar
* @SCANEX_news

Спасибо, коллеги!

Спутник ДЗЗ

31 Oct, 10:43


Данные Global Land Cover Estimation (GLanCE) v1

Global Land Cover Estimation (GLanCE) — ежегодные глобальные данные о растительном покрове и его изменениях с 2001 по 2019 год, полученные с помощью снимков Landsat с пространственным разрешением 30 метров. Данные охватывают весь земной шар, кроме Антарктиды и включает 10 наборов научных данных (Science Data Sets, SDS). Для определения почвенно-растительного покрова и его изменений используется алгоритм Continuous Change Detection and Classification (CCDC).

SDS GLanCE разделены на три категории:

1️⃣ Почвенно-растительный покров и его изменения. Четыре набора данных содержат (1) класс почвенно-растительного покрова, (2) оценку качества классификации почвенно-растительного покрова, (3) предыдущий почвенно-растительный покров для тех мест, где произошли изменения и (4) приблизительный день года, когда произошли изменения (DOY).

2️⃣ Динамика озеленения (Greenness Dynamics). Четыре набора данных характеризуют годовую “озелененность” (greenness) с помощью Enhanced Vegetation Index (EVI2), включая (1) медиану, (2) амплитуду, (3) скорость изменения (если присутствует) и (4) величину изменения медианы EVI2 для тех пикселей, где произошли изменения.

3️⃣ Тип листьев и фенология. Два набора данных определяют тип листьев и фенологию для пикселей, покрытых деревьями.

🌍 GLanCE на GEE

Руководство пользователя с подробной информацией о каждом слое данных: 🔗 ссылка.

❗️В первой версии GLanCE есть 7 из 10 обещанных SDS. Оценка качества классификации почвенно-растительного покрова, а также данные о типах листьях и фенологии будут добавлены в следующих версиях. Кроме того, текущий набор данных включает данные по Северной и Южной Америке, Европе и Океании, а Африка и Азия будут добавлены в начале 2025 года.

Описание методики создания данных:

📖 Friedl M.A. et al. 2022. Medium Spatial Resolution Mapping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat. Frontiers in Remote Sensing 3. https://doi.org/10.3389/frsen.2022.894571

#данные #GEE #LULC

Спутник ДЗЗ

31 Oct, 08:19


🛰 Старт заправки космического аппарата «Кондор-ФКА» № 2

В понедельник специалисты Роскосмоса транспортировали «Кондор-ФКА» № 2 из монтажно-испытательного корпуса космических аппаратов в зал заправочной станции.

25 октября, завершилась заправка разгонного блока «Фрегат». В кратчайшие сроки подготовлено топливо и сжатые газы к следующей заправке.

После заправки совместный расчет проведет заключительные операции, а также совместные проверки с разгонным блоком «Фрегат» перед дальнейшей сборкой космической головной части.

🗓 Старт миссии с Восточного — в конце ноября

Фото: Космический центр «Восточный»

Спутник ДЗЗ

31 Oct, 08:19


СИСТЕМЫ ОТДЕЛЕНИЯ АЭРОСПЕЙС С 43 СПУТНИКАМИ КУБСАТ ГОТОВЫ К ПУСКУ РН «СОЮЗ-2»/ РБ «ФРЕГАТ» В РАМКАХ МИССИИ «ИОНОСФЕРА-М» № 1-2!

В МИКе космодрома Восточный техническая команда установила 12 пусковых контейнеров (ПК) Аэроспейс с КА Кубсат на раму РБ «Фрегат».

Форматы ПК Аэроспейс:
- 9 ПК формата 12U (4×3U);
- 2 ПК формата 12U (2×3U+6U);
- 1 ПК формата 12U(1×12U).

Спутники в ПК Аэроспейс:
- В 6 ПК в интересах частной космической компании «СПУТНИКС» (входит в Sitronics Group) интегрировано 24 гражданских спутника «SITRO-AIS» первой российской группировки для автоматической идентификации судов в Мировом океане.
- В рамках проекта «Space-π» Фонда содействия инновациям на орбите будут отделены 16 научно-образовательных МКА.
- Для российского коммерческого заказчика на орбиту будут выведены 3 гражданских КА Кубсат: 1 КА формата 12U и 2 КА формата 3U.

Подробнее о миссии на сайте.

Фото: Космический центр «Восточный».

Спутник ДЗЗ

31 Oct, 07:01


Millennium Space Systems изготовит еще 6 спутников для обнаружения и отслеживания ракет [ссылка]

Космические силы США заключили контракт на 386 миллионов долларов с Millennium Space Systems, дочерней компанией Boeing, на создание шести спутников, предназначенных для обнаружения и отслеживания ракет, которые могут угрожать США и их союзникам.

Данный контракт стал второй крупной сделкой для Millennium Space в рамках программы по обнаружению и отслеживанию ракетных угроз, после того как в декабре 2023 года компания заключила соглашение на 509 миллионов долларов на создание идентичного набора из шести спутников. Таким образом, всего Millennium Space изготовит 12 спутников для работы на средней околоземной орбите.

На спутниках будут установлены тепловые инфракрасные датчики, разработанные компанией Boeing, способные обнаруживать и отслеживать как традиционные баллистические ракеты, так и новые гиперзвуковые вооружения, которые особенно сложно отследить из-за их скорости и маневренности.

Спутники будут оснащены лазерными линиями связи, что позволит им оперативно обмениваться данными друг с другом. Эта функция, в сочетании с размещением спутников на средней околоземной орбите, обеспечит более широкую зону покрытия и более длительное время отслеживания потенциальных угроз.

Первые шесть спутников планируется вывести на орбиту в конце 2026 года, а вторую партию — в конце 2027 года.

Millennium Space создала специальное производство для изготовления этих спутников, что, по словам компании, позволило оптимизировать производственные процессы и снизить затраты.

Новая спутниковая сеть будет интегрирована с существующими системами предупреждения о ракетном нападении Космических сил США и создаст комплексную сеть противоракетной обороны, которая объединит спутники на разных орбитах, чтобы обеспечить более надежное отслеживание потенциальных угроз.

Самый востребованный вид ДЗЗ(

📸 Художественное изображение спутника слежения за ракетами.

#США #война

Спутник ДЗЗ

30 Oct, 14:35


Преобразование координат объектов `SpatVector`

Для преобразования координат объектов SpatVector и SpatRaster из одной системы координат в другую в пакете terra используется функция project.

Входные параметры project():

1. x: объект SpatVector или SpatRaster, который нужно преобразовать.
2. y: новая система координат (CRS) в виде строки (WKT, PROJ4 или EPSG-кода) или объекта SpatRaster, у которого будет взята система координат.
3. method: метод интерполяции, используемый для преобразования растровых данных. По умолчанию используется "bilinear".
4. res: пространственное разрешение итогового растра (если x — объект SpatRaster).
5. size: размер итогового растра (если x является SpatRaster).
6. filename: имя файла для сохранения результата.
7. ...: Дополнительные аргументы, передаваемые другим методам.

С использованием project для перепроецирования растров мы уже знакомы. Теперь посмотрим, как функция работает с векторными данными. Спойлер: точно также, даже проще.

Создадим вектор (SpatVector) в системе координат WGS84:

library(terra)

# Создадим вектор из WKT.
v <- vect("POLYGON ((0 -5, 10 0, 10 -10, 0 -5))", crs="EPSG:4326")

plot(v, border='blue', col='yellow', lwd=3, main = "Исходный полигон в WGS84")


Преобразуем SpatVector в новую систему координат EPSG:3857:

# Проектируем в EPSG:3857
v_projected <- project(v, "EPSG:3857")

# Проверяем старую и новую системы координат
cat(crs(v))
cat(crs(v_projected))

plot(v_projected, col = "red", main = "Перепроецированный полигон в EPSG:3857")


Преобразуем SpatVector в систему координат другого объекта SpatVector:

# Создадим новый вектор в UTM Zone 33N (EPSG:32633)
v2 <- vect(cbind(x = c(1, 2, 3), y = c(1, 2, 3)), crs = "EPSG:32633")

# Перепроецирование v в систему координат v2
v1_projected <- project(v, v2)

# Проверяем новую систему координат
cat(crs(v1_projected))

plot(v1_projected, col = "red", main = "Перепроецированный полигон в UTM Zone 33N")


#R

Спутник ДЗЗ

26 Oct, 12:00


В Индии выросло число компаний, специализирующихся на производстве спутников [ссылка]

В космическом секторе Индии увеличилось количество компаний, специализирующихся на производстве спутников. При этом наметилась новая тенденция: переход от создания крупногабаритных аппаратов к более компактным и эффективным устройствам размером с ноутбук.

Примером такого подхода служит индийский космический аппарат “Чандраян-3”, который в августе 2023 года первым совершил мягкую посадку в полярном регионе Луны. Проект обошелся всего в 75 миллионов долларов. Несмотря на такую экономичность, аппарат измерил теплопроводность лунного грунта и обнаружил серу с помощью альфа-рентгеновского спектрометра.

Для поддержки частных инициатив в этой сфере правительство Индии учредило венчурный фонд в 119 млн долларов. Главные направления работы в частном космическом сегменте Индии — телекоммуникационные спутники, а также спутники для сельского хозяйства и добычи полезных ископаемых.

Сейчас число индийских космических компаний растет, дешевизна — их главное преимущество. В прошлом году в Индии было зарегистрировано более 100 предприятий, занимающихся разработкой и производством космической техники. В 2023 году компании, работающие в данной сфере, привлекли инвестиции в размере 126 миллионов долларов, что на 7 процентов больше, чем в 2022 году.

В настоящее время на Индию приходится 2% мирового рынка коммерческих космических услуг.

📸 Посадочный модуль “Викрам” миссии “Чандраян-3” на поверхности Луны. Снимок сделан луноходом “Прагъян”.

#индия

Спутник ДЗЗ

26 Oct, 10:02


Опубликован четвертый том Национального доклада “Глобальный климат и почвенный покров России: Арктическая зона, мерзлотные почвы — будущему России (сельское и лесное хозяйство)” под редакцией Р.С.‑Х. Эдельгериева и А.Л. Иванова.
 
🌱 Скачать книгу*: https://esoil.ru/info_resources/publications

📖 Национальный доклад «Глобальный климат и почвенный покров России: арктическая зона, мерзлотные почвы — будущему России (сельское и лесное хозяйство)» (под редакцией Р.С.-Х. Эдельгериева и А.Л. Иванова). Том 4. М.: ФГБНУ ФИЦ «Почвенный институт им. В.В. Докучаева», 2024. 672 с.

Четвертый том Национального доклада «Глобальный климат и почвенный покров России» подготовлен группой ведущих российских экспертов и организаций. Он представляет собой пример объединения усилий научного и экспертного сообщества с целью выработки новых подходов к управлению рисками, связанными с влиянием климатических изменений на природную среду и виды хозяйствования в Арктике и Субарктике. В документе представлен широкий аналитический материал, обобщена имеющаяся на сегодняшний день информация и фактура современного состояния почвенного покрова Арктической зоны Российской Федерации, прогноз возможных изменений под воздействием естественных факторов, в первую очередь климатических, а также текущей и потенциальной трансформации почв в результате различной антропогенной деятельности. В Докладе представлен также почвенный покров зоны сплошного и прерывистого распространения многолетнемерзлотных пород за пределами Арктической зоны, который подвергается тем же рискам в условиях меняющегося климата и увеличивающегося антропогенного воздействия. Анализируются региональные изменения климатических условий и их последствия для почвенного покрова и сельскохозяйственного освоения. Рассматриваются вопросы стратегии и технологии адаптации почвенного покрова мерзлотных областей к климатическим и антропогенным изменениям.

*На сайте можно свободно скачать и три предыдущих тома доклада.

#почвы #климат

Спутник ДЗЗ

26 Oct, 07:55


Австралийский SmartSat Cooperative Research Centre и Греческий космический центр подписали соглашение о сотрудничестве в области обмена данными и применения ДЗЗ [ссылка]

Стороны подписали меморандум о взаимопонимании, который направлен на использование взаимодополняющих преимуществ SmartSat CRC и Греческого космического центра путем содействия совместным исследованиям, обмена научно-технической информацией и изучения синергии между австралийской миссией Kanyini и национальной программой Греции по созданию микроспутников. Меморандум также поощряет обмен экспертами и другие совместные мероприятия, направленные на развитие космической техники и исследований.

Сотрудничество будет сосредоточено в нескольких ключевых областях:

* Микроспутники. Обе страны развивают микроспутниковые технологии, причем SmartSat CRC возглавляет космические и исследовательские инициативы Австралии, а Греческий космический центр делает то же самое в Греции.
* Наблюдение Земли. Совместные исследования технологий наблюдения Земли и их применения в сельском хозяйстве, мониторинге стихийных бедствий, экологической устойчивости, морском наблюдении и адаптации к изменению климата.
* Космическая наука и академическое сотрудничество. Включает обеспечение осведомленности об обстановке в космосе, интернет вещей и космическую связь, с акцентом на радиочастотную и оптическую связь.
* Коммерческое сетевое взаимодействие. Содействие сотрудничеству между академическими, промышленными и правительственными заинтересованными сторонами из обеих стран для развития космических исследований и коммерциализации технологий.

#греция #австралия

Спутник ДЗЗ

26 Oct, 07:00


Министерство торговли США ослабило экспортный контроль за продажей оптических и радарных спутников ДЗЗ в Австралию, Канаду и Великобританию [ссылка]

“Три новых правила... пересматривают наш подход к экспортному контролю. Они ослабляют ограничения на некоторые менее чувствительные технологии, связанные с космосом, и на товары, связанные с космическими аппаратами, которые отправляются нашим ближайшим союзникам, таким как Австралия, Канада и Великобритания. Эти изменения облегчат жизнь американским компаниям и будут способствовать развитию инноваций без ущерба для критически важных технологий, обеспечивающих безопасность нашей страны”, — сказал представитель министерства торговли США.

Первое изменение правил отменяет “лицензионные требования” к спутникам дистанционного зондирования (ДЗЗ), оснащенным электрооптическими камерами и радарами, а также к спутниковым системам, “обеспечивающим космическую логистику, сборку или обслуживание космических аппаратов, предназначенных для Австралии, Канады и Великобритании”.

Второе изменение отменяет лицензионные требования для экспорта “некоторых компонентов космических аппаратов более чем 40 союзникам и партнерам по всему миру” — например, членам НАТО и Европейского союза, — облегчая экспорт “наименее чувствительных компонентов для большинства направлений и расширяя исключения из лицензий”, пояснил чиновник. “Ключевой целью этого изменения является укрепление и расширение программ сотрудничества НАСА”.

Третье изменение правил все еще находится на стадии предложения и будет опубликовано вместе с соответствующим предложением Госдепартамента по реформе экспорта в Федеральном реестре для публичных комментариев до 22 ноября.

#США

Спутник ДЗЗ

25 Oct, 12:02


QDANN — карты урожайности кукурузы, сои и озимой пшеницы на внутриполевом уровне

В 🛢 наборе данных QDANN 30m Yield Map for Corn, Soy, and Winter Wheat in the U.S представлены общедоступные 30-метровые годовые карты урожайности кукурузы, сои и озимой пшеницы для основных растениеводческих штатов США, начиная с 2008 года. В отличие от других подобных данных, эти карты показывают урожайность на каждом пикселе поля.

Набор данных основан на снимках Landsat и погодных данных Gridmet. Он проверен с помощью записей мониторов урожайности, содержащих около миллиона полевых наблюдений за год.

Карты созданы по методике Quantile Loss Domain Adversarial Neural Networks (QDANN), которая для нас может оказаться гораздо интереснее, чем готовые карты. QDANN использует информацию из наборов данных на уровне округов (county) для картографирования урожайности в более тонком пространственном разрешении, и призвана устранить ограничения, связанные с нехваткой наземных данных для обучения и оценки моделей. QDANN использует стратегию адаптации домена без обучения (unsupervised domain adaptation strategy), обучаясь на маркированных данных уровня округа и используя при этом немаркированные данные подполей, что устраняет необходимость в информации об урожайности на уровне подполей.

Данные объединены в две коллекции — для кукурузы-сои и озимой пшеницы. По сравнению с оригинальной статьей, к данным на GEE добавлены аббревиатуры штатов (свойство ‘state_abbv’) и календарные даты. Это позволяет легко фильтровать по штатам и датам коллекции:

🔹 Corn & Soybean. Слои: b1 – corn, kg/ha; b2 – soybean, kg/ha
🔹 Winter Wheat. Слои: b1 – winter wheat, kg/ha

📖 Ma, Y., Liang, S.-Z., Myers, D. B., Swatantran, A., & Lobell, D. B. (2024). Subfield-level crop yield mapping without ground truth data: A scale transfer framework. Remote Sensing of Environment, 315, 114427. https://doi.org/10.1016/j.rse.2024.114427

#данные #GEE #сельхоз #GAN

Спутник ДЗЗ

25 Oct, 09:15


Компания Hydrosat получила от ВВС США контракт на сумму 1,9 миллионов долларов [ссылка]

Компания Hydrosat, использующая тепловые снимки из космоса для измерения водного стресса в сельском хозяйстве и смягчения последствий изменения климата, получила контракт от ВВС США на сумму 1,9 млн долларов на предоставление тепловых спутниковых данных со своих спутников VanZyl. Компания заявила, что ее данные сыграют важную роль в совершенствовании моделей прогнозирования облачности и погоды в интересах заказчика.

Новый контракт является уже пятым контрактом Hydrosat с ВВС США, и крупнейшим на сегодняшний день с данным заказчиком. Hydrosat также имеет контракт на поставку спутниковых данных для Национального разведывательного управления США (NRO), о котором было объявлено в декабре 2023 года. Кроме того, Hydrosat отслеживает миллионы акров земли в интересах таких клиентов, как NOAA, SupPlant и Nutradrip.

#LST #война

Спутник ДЗЗ

25 Oct, 06:44


В МАИ научат искусственный интеллект определять плодородие почвы [ссылка]

Ученые Московского авиационного института (МАИ) работают над базой больших данных в области почвоведения. Проект включает в себя спутниковые снимки пахотных земель в разных спектральных диапазонах за последние четыре года. Специалисты уже приступили к разработке программы, которая сможет определять области повышенного плодородия почв. 

Стартовой экспериментальной площадкой для реализации этого уникального проекта станет Куркинский район Тульской области. На протяжении 2024 года сотрудники МАИ собирали спутниковые снимки и другие данные, которые станут основой проекта. Именно они позволят искусственному интеллекту оценивать плодородие почвы.

С помощью автоматизированного анализа изображений, ИИ сможет определять участки с наибольшей и наименьшей продуктивностью. Это позволит фермерам оптимально распределить удобрения, ориентируясь на участки с низким содержанием питательных веществ.

По словам руководителя проекта, кандидата биологических наук, доцента кафедры “Экология, системы жизнеобеспечения и безопасность жизнедеятельности” МАИ Сергея Огородникова, использование методов машинного обучения дает возможность классифицировать почвы, выявлять скрытые зависимости между их физико-химическими и биологическими характеристиками. 

“Для роста урожайности и увеличения производительности критически важно рационально и эффективно вносить удобрения, понимать, как меняются почвенно-экологические условия внутри поля. Данный метод позволяет уточнить взаимосвязь между спектральными характеристиками почвы и растительностью на ней. Почвы обладают способностью поглощать и отражать различные виды света, что видно на инфракрасных снимках”, — отмечает Сергей Огородников. 

Уже сейчас большой интерес к проекту проявляют тульские фермеры. При работах на полях они начали ориентироваться на расчеты и спутниковые снимки, собранные специалистами МАИ.

“Мы получаем реальные заказы от агрохолдингов, в этом году обследовали 60 тысяч гектаров. Для проведения исследования мы подготовили сетку отбора проб, разбив поля на квадраты по 10 га с учетом рельефа и продуктивности почв. Без искусственного интеллекта вручную решить такую задачу было бы невозможно”, — говорит ученый.
Коммерциализация результатов исследования начата благодаря гранту “Умник” от Фонда содействия инновациям. В настоящее время коллективом подана заявка на следующий этап конкурса — “Старт-ИИ”.

По результатам работ оформлено два патента: на агро-почвенно-экологическую базу данных Тульской области и программу, моделирующую распределение загрязняющих веществ в почве с учетом рельефа местности. 

“Автоматический анализ снимков позволит выделять на полях зоны продуктивности. В результате фермеры смогут оптимизировать внесение удобрений, перераспределяя их на обедненные полезными веществами участки. Эти управленческие и мелиоративные решения смогут повысить урожайность и обеспечить устойчивое развитие территории, направленное на борьбу с деградацией почв”, — добавил Огородников. 

#сельхоз #почва

Спутник ДЗЗ

24 Oct, 12:15


Плотина Хардап, Намибия

На этом ложно-цветном изображении (📸Sentinel-2, 28 августа 2024 года) показан район плотины Хардап (Hardap) на реке Фиш-Ривер в Намибии. Здесь жарко и сухо — район находится на западной окраине пустыни Калахари. В центре изображения синим цветом выделяется водохранилище. Различные оттенки синего означают наличие осадочных пород в воде.

Ближний инфракрасный канал снимка использован для выделения растительности красным цветом. На пойме ниже плотины можно заметить сельскохозяйственные поля, где выращивают в основном овощи и цитрусовые. Различные оттенки красного показывают состояние посевов: чем ярче красный цвет, тем здоровее растительность.

Примерно в 20 км к юго-востоку от плотины, на восточном берегу Фиш-Ривер, расположен город Мариенталь. На снимке он выглядит как смесь красных и серых пикселей. Недалеко от Мариенталя каменистая равнина Центрального нагорья сливается с сухой песчаной почвой западной границы пустыни Калахари.

Вся западная часть Калахари покрыта длинными цепями песчаных дюн. Удивительно параллельные и однородные, эти дюны видны в оттенках желтого в правом верхнем углу сцены.

В правой части снимка ландшафт усеян сухими озерами (солончаками), которые выглядят как сверкающие белые круги.

Дороги выглядят как белые ломаные линии, резко пересекающие ландшафт.

#снимки

Спутник ДЗЗ

24 Oct, 09:45


130 лет РКЦ «Прогресс» [ссылка]

24 октября 2024 года исполняется 130 лет со дня основания РКЦ «Прогресс».

История предприятия началась в 1894 году в Москве с небольшой велосипедной фабрики «Дукс». Уже в начале ХХ века «Дукс» от велосипедов перешёл к производству автомобилей и дирижаблей, а позже начал поставлять аэропланы и самолёты на вооружение российской армии. К 1917 году завод стал одним из крупнейших авиастроительных центров царской России.

В советские годы Государственный авиационный завод №1 освоил производство многих экспериментальных и серийных образцов лётной техники. В октябре 1941 года завод был эвакуирован в Куйбышев (ныне Самара). На новой площадке заводчане освоили производство оружия Победы — легендарных штурмовиков Ил-2. Каждый шестой самолёт, воевавший на фронтах Великой Отечественной войны, был изготовлен в цехах завода № 1. В 1941–1945 гг. завод выпустил и отправил на фронт более 16 тысяч боевых машин.

В начале 1958 года Правительством страны было принято решение о размещении на Государственном авиационном заводе № 1 серийного производства межконтинентальной баллистической ракеты Р-7. Это событие ознаменовало начало космической истории на самарской земле.

Сегодня РКЦ «Прогресс» — это ведущее российское предприятие по разработке и производству ракетно-космической техники. Усилия коллектива предприятия направлены на создание космических аппаратов нового поколения — «Ресурс-ПМ», «Обзор-Р», а также малых космических аппаратов «Аист-2Т». Информация с этих аппаратов станет уникальной по точности и качеству снимков, а высокая оперативность её передачи позволит эффективно использовать полученные данные для решения задач потребителей.

Поздравляем с юбилеем!

#история

Спутник ДЗЗ

24 Oct, 08:45


🔔 29 октября в 17:00 мск пройдет исследовательский семинар на тему: «Продуктивность сельскохозяйственных экосистем: мониторинг и современные технологии адаптации в сельском хозяйстве».

🔔 Соорганизаторы семинара: МГИМО МИД России и научный консорциум «РИТМ углерода».

🔗 Исследовательский семинар пройдет в формате онлайн. Чтобы принять в нем участие – необходимо зарегистрироваться по ссылке.

Ссылка на подключение будет отправлена на электронные почты всех зарегистрированных участников за час до семинара 29 октября!

Участники семинара обсудят основные тренды международной повестки в области охраны почв, особенности ведения сельского хозяйства в различных государствах, роль молодёжи в изучении продуктивности почв и многое другое.

🎙На семинаре выступят:

🔵Орденов Геннадий Иванович, член комитета по агропродовольственной политике и природопользованию Совета Федерации;

🔵Амбурцева Наталия Игоревна, секретарь постоянной комиссии Межпарламентской ассамблеи государств-участников МПА СНГ по аграрной политике, природным ресурсам и экологии (Санкт-Петербург);

🔵Гераськина Анна Петровна, к.б.н., зав. лабораторией структурно-функциональной организации и устойчивости лесных экосистем ЦЭПЛ РАН, руководитель направлений «Почвенная биота» и «Образование» консорциума «РИТМ углерода». Тема: «Как дождевые черви формируют климатически умные почвы»;

🔵Лозбенев Николай Игоревич, н.с. ФИЦ «Почвенный институт им. В.В. Докучаева», участник научного консорциума «РИТМ углерода». Тема: «Запасы углерода в почвах агроэкосистем: мониторинг и устойчивое управление»;

🔵Шейнфельд Светлана, к.ю.н., зам. директора группы операционных рисков и устойчивого развития Kept. Эксперт в области устойчивого развития и ESG-трансформации, разработки корпоративных программ сохранения биоразнообразия. Разработчик национальных стандартов в области сохранения биоразнообразия;

🔵Дронин Николай Михайлович, к.г.н., зав. лабораторией природных ресурсов и техногенных изменений природной среды, географический факультет МГУ им. М.В. Ломоносова, эксперт ООН в области оценки изменений окружающей среды;

🔵Тихонов Дмитрий Николаевич, лаборант-исследователь ЦЭПЛ РАН. Тема: «Определение запаса углерода в надземной части древостоя на зарастающих лесом сельскохозяйственных полях по данным ДЗЗ»;

🔵Почтенная Алена Игоревна, сотрудник лаборатории корневого питания и качества растений, факультет почвоведения, МГУ имени М.В. Ломоносова; стажер глобального почвенного партнерства ФАО ООН. Тема: «Адаптация сельского хозяйства к последствиям интенсификации земледелия: вызовы и решения»;

🔵Рязанова Наталья Евгеньевна, к.г.н., доцент кафедры международных комплексных проблем природопользования и экологии (МКППиЭ) МГИМО МИД России. Тема: «Векторы развития сельского хозяйства в засушливы государствах».

📚 Данное мероприятие станет вторым в цикле совместных научно-образовательных семинаров консорциума «РИТМ углерода» и МГИМО МИД России. В ноябре-декабре 2024 года пройдет еще два исследовательских семинара, посвященные вопросам продуктивности экосистем в условиях меняющегося климата.

#мероприятиеРИТМуглерода #МГИМО #АннаГераськина #НиколайЛозбенев #ДмитрийТихонов

Спутник ДЗЗ

24 Oct, 07:45


Запуск радарного спутника “Обзор-Р” перенесен на начало 2025 года [ссылка]

Запуск многофункционального радарного спутника "Обзор-Р" ожидается в начале 2025 года, а не в конце 2024, как сообщалось ранее. Об этом в интервью ТАСС сообщил генеральный директор "Ракетно-космического центра "Прогресс" (Роскосмос) Дмитрий Баранов.

"Подготовить и отправить космический аппарат "Обзор-Р" №1 на космодром планируется в декабре этого года, при этом запуск космического аппарата возможно осуществить в первом квартале 2025 года", — сказал Баранов, также напомнив, что бортовая аппаратура для аппарата поступила на предприятие в апреле.

Он добавил, что сейчас также идет техническое проектирование второго "Обзора-Р" — завершить этот этап работ планируется в мае 2025 года. "Запуск КА "Обзор-Р" №2 по государственному контракту планируется в 2029 году", — отметил Баранов. Кроме того, он подтвердил перенос запуска биологического спутника "Бион-М" №2 на следующий год.

📸 Художественное изображение космического аппарата "Обзор-Р"

#россия

Спутник ДЗЗ

24 Oct, 06:45


78 лет назад, 24 октября 1946 года была получена первая фотография Земли из космоса. Снимок сделан с борта немецкой ракеты V-2, запущенной с полигона Уайт-Сэндс (шт. Нью-Мексико, США). Ракета находилась на суборбитальной траектории с апогеем 105 км. Съёмку производили 35-мм кинокамерой на чёрно-белую киноплёнку. Фотографии делались каждые полторы секунды.

#история

Спутник ДЗЗ

23 Oct, 12:01


Чтение и запись векторных данных

Чтение векторных файлов осуществляет функция vect — та же, что отвечает за создание векторных данных.

Одним из распространенным форматов файлов векторных данных является шейпфайл (shapefile). Это набор из четырёх (или большего числа) файлов с одинаковыми именами, но разными расширениями. Для шейпфайла x в одной папке должны находиться: x.shp, x.shx, x.dbf и x.prj.

Откроем шейпфайл, поставляемый вместе с пакетом terra:

library(terra)
filename <- system.file("ex/lux.shp", package="terra")
## [1] "C:/Users/User/AppData/Local/R/win-library/4.3/terra/ex/lux.shp"

s <- vect(filename)
s
## class : SpatVector
## geometry : polygons
## dimensions : 12, 6 (geometries, attributes)
## extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
## source : lux.shp
## coord. ref. : lon/lat WGS 84 (EPSG:4326)
## names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
## type : <num> <chr> <num> <chr> <num> <int>
## values : 1 Diekirch 1 Clervaux 312 18081
## 1 Diekirch 2 Diekirch 218 32543
## 1 Diekirch 3 Redange 259 18664


Функция system.file возвращает полный путь к файлу. Она нужна только для примеров работы с данными, поставляемыми с R. Для собственных файлов используйте функцию vect, указав полный путь к нужному файлу.

vect возвращает объекты SpatVector. Фактически, она создаёт эти объекты с нуля, как мы видели раньше, или из файлов векторных данных различных форматов. В нашем случае построен SpatVector, состоящий из 10 полигонов с 6 атрибутами (переменными).

Для записи векторных служит функция writeVector:

outfile <- "shp_test.shp"
writeVector(s, outfile)


Чтобы перезаписать файл поверх, нужно добавить аргумент overwrite=TRUE

writeVector(s, outfile, overwrite=TRUE)


Для удаления файлов используют функции file.remove или unlink. Будьте осторожны, не спешите!

При удалении шейпфайла нам придётся удалять сразу несколько файлов. В качестве примера удалим shp_test. Сначала мы выделим нужные файлы функцией list.files, указав шаблон имени файла, а затем удалим их при помощи file.remove

ff <- list.files(pattern="^shp_test")
ff
## [1] "shp_test.cpg" "shp_test.dbf" "shp_test.prj" "shp_test.shp" "shp_test.shx"
file.remove(ff)
## logical(0)


TRUE на выходе file.remove показывает, что заданный файл удален.

#R

Спутник ДЗЗ

23 Oct, 10:01


Wyvern получила 6 миллионов долларов на развитие бизнеса по гиперспектральному наблюдению Земли [ссылка]

Канадская компания Wyvern, занимающаяся гиперспектральным наблюдением Земли, заявила о привлечении 6 млн. долларов инвестиций.

Сейчас гиперспектральные сенсоры Wyvern размещены на трех спутниках. В ближайшие 18 месяцев компания планирует запустить еще три спутника, выйти на рынок США, пополнить штат, состоящий из 36 человек, и разработать новую развертываемую оптику.

В отличие от других компаний, специализирующихся на дистанционно зондировании, Wyvern использует модель “группировка как услуга”. Сенсоры компании летают на спутниках, управляемых компанией AAC Clyde Space, а следующие три спутника будут управляться компанией Loft Orbital.

“Мы не собирали кучу денег, чтобы стать вертикально интегрированной компанией”, — сообщил директор по доходам Томас ВанМатре (Thomas VanMatre). “Мы хотели выйти на рынок быстрее всех, и нам это удалось. Это позволило нам получить много отзывов и отточить соответствие продукта рынку”.

Гиперспектральные сенсоры Wyvern разработаны собственными силами, при поддержке канадского правительства. Они имеют разрешение 5 м и могут передавать данные в 32 спектральных диапазонах.

“Мы не занимаемся аналитикой, не создаем платформы, нам не нужны решения”, — говорит ВанМатре. “Наш подход к рынку заключается в том, чтобы ориентироваться только на очень сложных (sophisticated) клиентов”. К ним относятся государственные организации, как гражданские, так и военные, крупные сельскохозяйственные и лесные компании, а также “горнодобывающие корпорации, в штате которых действительно есть специалисты по изучению гиперспектральных данных”, добавил он.

В июле Wyvern получила патенты на развертываемую оптику — уменьшенную версию раскладывающихся зеркал, которые делают космический телескоп “Джеймс Уэбб” таким мощным. Компания все еще разрабатывает технологию, но если ей удастся достичь своей цели, выгода по словам ВанМатре может быть огромной.

“Это может изменить игру в дистанционное зондирование с помощью малых спутников”, — говорит ВанМатре. “По сути, вы сможете получить разрешение Maxar Worldview 3 на платформе типа Planet Dove”.


Payload называет Wyvern “единственной компанией, продающей данные гиперспектральных наблюдений из космоса на открытом рынке”. Это не так. При желании, можно, как минимум, найти данные китайских аппаратов ZY-1 и OHS, а также данные индийской компании Pixxel.

#канада #гиперспектр

Спутник ДЗЗ

23 Oct, 07:22


Вводный курс по спутниковым системам

Коллеги из “Образования будущего” рекомендуют бесплатный вводный курс по 🛰 спутниковым системам на Stepik. Курс пригодится участникам одноимённого профиля Национальной Технологической Олимпиады 2024/2025 учебного года, а также всем желающим погрузиться в тему.

На курсе вы узнаете:

🔹 Больше о первом искусственном спутнике Земли
🔹 О классификации космических аппаратов сегодня
🔹 О том из чего состоят современные спутники и за что отвечают различные бортовые системы
🔹 Погрузитесь в проектирование космических аппаратов на "Компасе 3D"
🔹 Потренируетесь с программированием микроконтроллеров на базе Arduino и ESP
🔹 Прикоснетесь к основам Linux и Python в контексте работы со спутниковыми системами

📍 Ссылка на онлайн-курс: https://stepik.org/course/215991

Курс рассчитан на учеников 8–11 классов.

#обучение

Спутник ДЗЗ

22 Oct, 11:40


Как дистанционное зондирование и ГИС-технологии внедряются в археологические исследования на Юге России [ссылка]

В мировой практике до начала раскопок обязательным является дистанционное изучение археологического памятника: спутниковая съемка, магнитная разведка и анализ полученных с их помощью данных. В южных регионах России (и не только) эта практика внедряется весьма активно, объяснил кандидат исторических наук, профессор кафедры всеобщей истории и международных отношений Кубанского государственного университета (КубГУ) Иван Марченко. Кроме того, важную роль в развитии новых технологий играет кооперация российских и зарубежных ученых и организаций.

“Зарубежным коллегам есть чему поучиться у российских археологов. В качестве примера можно привести методику раскопок и анализ материалов палеолитических стоянок: таких как Богатыри, Родники на Таманском полуострове, Мезмайская пещера в Краснодарском крае, пещера Ласок в Северной Осетии и многие другие”, — поделился Марченко.

На Юге России с применение ГИС-технологий позволило выявить систему древних дорог на Таманском полуострове, размежёвку хоры городов Азиатского Боспора и обнаружить неизвестные ранее археологические памятники. При помощи этих технологий изучена планировка таких уникальных городищ как Семибратнее и Красный Октябрь (Краснодарский край).

По мнению старшего преподавателя кафедры “Археология и история культуры” Донского государственного технического университета (ДГТУ) Александра Русакова, главным “трендом” в археологии последних десятилетий является междисциплинарный подход к исследованиям. Тут речь идет о привлечении к работе не только археологов и историков, но и специалистов других специальностей, в первую очередь естественнонаучного спектра. Достижения наук используются для датирования археологических материалов, изучения химического состава артефактов, генетических исследований и т.д.

“На сегодняшний день главная задача – получить максимально возможное количество информации в ходе археологических исследований. Такой подход применяется во многих странах, однако различается от экспедиции к экспедиции и зависит прежде всего от уровня финансирования”, — сообщил ученый.

📸 Большая часть археологических памятников Юга России представлена вот такими курганами.

#россия #археология

Спутник ДЗЗ

22 Oct, 08:31


🛰 На Восточный прибыли 53 малых спутника для попутного запуска с двумя аппаратами «Ионосфера-М»

Малые спутники проходят электрические испытания, их проверки продлятся до 26 октября.

Далее их интегрируют в состав космической головной части с аппаратами «Ионосфера-М» № 1 и № 2 и разгонным блоком «Фрегат».

🗓 Старт — в ноябре

Фото: Космический центр «Восточный»

Спутник ДЗЗ

22 Oct, 07:09


Великобритания примет участие в финансировании Copernicus Sentinel Expansion Missions [ссылка]

Великобритания вернулась в европейскую программу наблюдения Земли из космоса Copernicus и примет участие в финансировании 📸 шести миссий, расширяющих возможности этой программы — Copernicus Sentinel Expansion Missions.

#UK

Спутник ДЗЗ

21 Oct, 17:54


Более 300 млрд руб будет инвестировано "Бюро 1440" в инфраструктуру низкоорбитальной спутниковой группировки скоростного доступа в интернет, а Минцифры направит более 100 млрд руб на компенсацию ставки по льготным кредитам, сообщили в ведомстве.

К концу 2027 г "Бюро 1440" планирует запустить 292 аппарата собственной разработки, а до 2030 года - 383.

Спутник ДЗЗ

21 Oct, 11:55


Карта типов сельскохозяйственных культур стран ЕС на 2022 год

В 📖 работе представлена карта типов сельскохозяйственных культур на территории Европейского союза (ЕС) на 2022 год с разрешением 10 метров.

Для обучения модели использованы данные наблюдения Земли и данные натурных наблюдений, полученные в рамках проекта Евростата Land Use and Coverage Area Frame Survey (LUCAS) 2022 года. Данные включали 134 684 полигона LUCAS Copernicus, спутниковые снимки Sentinel-1 и Sentinel-2, температуру поверхности земли и цифровую модель рельефа.

На основе этих данных с помощью метода машинного обучения Random Forest были разработаны два классификационных слоя: основная карта и карта заполнения пробелов для устранения пробелов, связанных с облачным покровом. Отметим, что отдельной задачей исследования являлось изучение оптимального набора входных признаков с учетом различных вариантов временного агрегирований спутниковых и климатических данных для получения карты без пространственных разрывов и с максимально возможной тематической точностью.

Объединенные карты, охватывающие 27 стран ЕС, показали общую точность 79,3% для семи основных классов растительного покрова и 70,6% — для всех 19 типов культур.

Обученная модель была использована для создания карты сельскохозяйственных культур Украины за 2022 год и показала свою устойчивость в регионах, не имеющих размеченных образцов для обучения модели.

Для создания карты использовалась платформа Google Earth Engine (GEE):

👨🏻‍💻 Скрипты GEE для создания карт типов сельскохозяйственных культур для 27 стран ЕС и Украины на 2022 год.

📖 Ghassemi, B., Izquierdo-Verdiguier, E., Verhegghen, A., Yordanov, M., Lemoine, G., Moreno Martínez, Á., De Marchi, D., van der Velde, M., Vuolo, F., & d’Andrimont, R. (2024). European Union crop map 2022: Earth observation’s 10-meter dive into Europe’s crop tapestry. Scientific Data, 11(1). https://doi.org/10.1038/s41597-024-03884-y

#данные #сельхоз #LULC #GEE

Спутник ДЗЗ

19 Oct, 14:30


Площадь складских помещений в районе Лос-Анджелеса напрямую связана с уровнем загрязнения воздуха мелкими частицами (PM2.5)

Ученые проанализировали закономерности и тенденции изменения концентрации PM2.5 в атмосфере и обнаружили, что в местах расположения большего количества (или более крупных) складов уровень PM2.5 и “черного” углерода выше, чем в местах, где складов меньше.

“Черный” углерод является компонентом мелкодисперсных твердых частиц PM2.5, который образуется в результате неполного сгорания ископаемого топлива, в частности, в результате работы дизельных двигателей большой мощности.

🗺 Карта показывает среднюю концентрацию загрязнения PM2.5 в Лос-Анджелесе с 2000 по 2018 год, а также расположение почти 11 000 складов за тот же период. Районы с более высокой концентрацией PM2.5 выделены темно-оранжевым цветом, а места расположения складов обозначены черными точками.

Данные о PM2.5 были получены с помощью моделей, основанных на спутниковых данных MODIS и ASTER.

#атмосфера

Спутник ДЗЗ

19 Oct, 09:30


Thales Alenia Space и Argotec займутся созданием спутников для итальянской системы ДЗЗ IRIDE

Итальянские космические компании Thales Alenia Space и Argotec займутся созданием спутников для итальянской орбитальной системы дистанционного зондирования Земли (ДЗЗ) IRIDE. Согласно новым контрактам, подписанным с Европейским космическим агентством (ESA), компании должны будут создать 21 аппарат в дополнение к 17, заказы на которые поступили ранее.

Соглашения были подписаны на 75-м Международном астронавтическом конгрессе (IAC), который прошел в Милане с 14 по 18 октября. Thales Alenia Space должна будет создать 6 радарных спутников NIMBUS, а Argotec — 15 спутников оптического наблюдения. Общая стоимость двух контрактов составила более €140 млн.

Система IRIDE создается под руководством правительства Италии, ESA и Итальянского космического агентства (ASI). Первые спутники планируется вывести на низкую околоземную орбиту в 2025 году. Ожидается, что IRIDE начнет полноценную работу к июню 2026 года.

🛰 IRIDE будет состоять из нескольких группировок спутников 1️⃣, высокодетальной мультиспектральной съемки 2️⃣,3️⃣, гиперспектральной съемки 4️⃣, сверхвысокодетальной съемки в видимом и ближнем инфракрасном диапазонах 5️⃣, а также двумя группировками радарных спутников 6️⃣,7️⃣.

#италия

Спутник ДЗЗ

19 Oct, 07:30


Обзор методов интерпретируемого машинного обучения для прогнозирования погоды и климата

В последнее время передовые модели машинного обучения достигли высокой точности прогнозирования погоды и климата. Большинство из этих моделей является “черными ящиками”: они выдают результаты, не позволяя пользователю заглянуть внутрь, чтобы разобраться, как именно был получен тот или иной прогноз. Поэтому важную роль приобретает развитие интерпретируемых методов машинного обучения.

В 📖 статье рассмотрены современные подходы к интерпретируемому машинному обучению, применяемые для метеорологических прогнозов. Подходы делятся на две группы: (1) методы интерпретации post-hoc, объясняющие предварительно обученные модели, такие как методы атрибуции на основе возмущений, теории игр и градиентные методы; (2) разработка интерпретируемых моделей с нуля с помощью таких архитектур, как ансамбли деревьев или объясняемые (explainable) нейронные сети. Коротко описан каждый метод, и то как именно он позволяет понять прогнозы, раскрывая метеорологические взаимосвязи, улавливаемые машинным обучением. В финале работы обсуждаются проблемы исследования и перспективы на будущее.

📖 Yang, R., Hu, J., Li, Z., Mu, J., Yu, T., Xia, J., Li, X., Dasgupta, A., & Xiong, H. (2024). Interpretable machine learning for weather and climate prediction: A review. Atmospheric Environment, 338, 120797. https://doi.org/10.1016/j.atmosenv.2024.120797

#нейронки #погода #ИИ #климат

Спутник ДЗЗ

18 Oct, 14:09


Интеграция КА Кубсат формата 6U «HyperView-1G» - наноспутника с рекордной остротой гиперспектрального «зрения» с контейнером Аэроспейс.

КА способен увидеть из космоса спектральные характеристики объектов, недоступные для обычной оптической съемки. Спутник создан Самарским университетом им. Королёва и частной компанией «СПУТНИКС» (входит в Sitronics Group) в рамках проекта «Space-π». Организатор проекта — Фонд содействия инновациям.

Ключевой элемент 🛰️ — компактный гиперспектрометр, разработанный самарскими учёными. Он обладает разрешающей способностью 7 метров на пиксель, что превосходит по характеристикам известные зарубежные и отечественные аналоги!

С помощью аппарата можно, например, определить участки озимых посевов с наибольшей зеленой массой и высоким количеством хлорофилла, узнать уровень запасов влаги в растениях и даже спрогнозировать будущую урожайность.

Спутник ДЗЗ

18 Oct, 10:59


ДальГАУ разработал региональную модель прогнозирования урожайности на основе спутниковых снимков [ссылка]

Сергей Маргелов, глава Центра искусственного интеллекта Дальневосточного государственного аграрного университета (ДальГАУ), рассказал, что на первом этапе с использованием спутникового мониторинга осуществляется актуализация векторного слоя сельскохозяйственных полей. «На втором этапе мы делаем наземное обследование, выехали и посмотрели. И на основании наземного мониторинга в рамках третьего этапа — вносим информацию в цифровую систему. Потом есть понимание, что и где происходит в каждом районе, муниципальном округе Амурской области».

«Мы обновили данные и подготовили информационный бюллетень, в котором представлена оценка состояния посевов и прогноз урожайности. Теперь Министерство сельского хозяйства Амурской области имеет полное представление о количестве обрабатываемых полей, их состоянии и существующих проблемах», — сообщил сотрудник Центра искусственного интеллекта ДальГАУ Никита Кирьяков.

Региональная модель прогнозирования урожайности развивается в рамках масштабной стратегической программы поддержки университетов «Приоритет–2030». Проект осуществляется в сотрудничестве с Министерством сельского хозяйства Амурской области, Институтом космических исследований РАН и Институтом космических исследований Земли. Еще одним партнером проекта является ООО «Амурагрокомплекс», который оказало поддержку специалистам ДальГАУ, предоставив возможность собирать эталонные данные со своих сельскохозяйственных полей.

#россия #сельхоз

Спутник ДЗЗ

18 Oct, 08:36


Немного в сторону от заявленной темы: оценка влияния температуры на возможности определения площади нефтяного загрязнения по данным радара X-диапазона:

📖 Сергиевская И.А., Лазарева Т.Н. Влияние температуры окружающей среды на вязкоупругие свойства нефтяных плёнок в приложении к проблеме дистанционного зондирования // Cовременные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 2. С. 176–183. DOI: 10.21046/2070-7401-2020-17-2-176-183. URL: http://jr.rse.cosmos.ru/article.aspx?id=2151

Данные лабораторных измерений показали, что коэффициент затухания сантиметровых волн увеличивается с уменьшением температуры окружающей среды для сырой нефти и нефтепродуктов во всём диапазоне толщины плёнок. Восстановленная упругость плёнок практически не зависит от частоты волны и возрастает с уменьшением температуры.

С использованием физической модели ветровых волн сделана оценка влияния температуры на спектральный контраст волн, т.е. на отношение спектральной интенсивности на чистой поверхности и поверхности, покрытой плёнками нефтепродуктов. Показано, что радиолокационный контраст в брэгговском приближении в сликах нефти при температуре порядка 25 ºC может быть в несколько раз меньше контраста при температуре 1–4 ºС. Эффект значителен для длины волны сантиметрового диапазона.

#нефть

Спутник ДЗЗ

18 Oct, 08:31


Методы определения толщины плёнок нефти на морской поверхности

Небольшая подборка ссылок по теме. Начнём с базового обзора.

📖 Мольков А.А., Капустин И.А., Ермошкин А.В., Ермаков С.А. Дистанционные методы определения толщины плёнок нефти и нефтепродуктов на морской поверхности // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 3. С. 9–27. DOI: 10.21046/2070-7401-2020-17-3-9-27. URL: http://d33.infospace.ru/d33_conf/sb2020t3/9-27.pdf

Для количественной оценки возможного ущерба от нефтяного разлива и определения мер по предотвращению катастрофы необходимо располагать информацией об объёме загрязнения, который обычно вычисляется из оценки площади и толщины поверхностной плёнки. Современные инструменты дистанционного зондирования водной поверхности, а точнее их комплекс, позволяют оперативно обнаруживать поверхностные загрязнители, вести их мониторинг и получать информацию о площади покрытия. При этом оценивать толщину плёнок на морской поверхности с необходимой точностью на сегодняшний день не представляется возможным. В обзоре рассмотрены возможности современных инструментов дистанционной диагностики толщины плёнок с указанием ограничений их применимости. Обзор включает пассивные и активные методы оптического и радиодиапазонов, акустические методы, а также их комбинации.

Методика оценки объёма загрязнения для случая оптически “толстой” плёнки:

📖 Станичный С.В., Медведева А.В. Квазипостоянные источники плёночных загрязнений морской поверхности в Мраморном море // Современные проблемы дистанционного зондирования Земли из космоса. 2023. Т. 20. № 6. С. 303–310. DOI: 10.21046/2070-7401-2023-20-6-303-310. http://jr.rse.cosmos.ru/article.aspx?id=2770

Учитывая разность диэлектрической проницаемости нефти и воды, первый максимум коэффициента отражения наблюдается при толщине плёнки, соответствующей приблизительно 1/6 длины волны электромагнитного спектра (Лебедев, 2015)*. Таким образом, на разных длинах волн увеличение коэффициента отражения будет наблюдаться при различных значениях толщины плёнки. Этот эффект даёт возможность при многоспектральном подходе провести оценку объёма плёночного загрязнения. Оценка толщины плёнки произведена по данным MSI Sentinel-2.

*Лебедев Н.Е. Определение толщины нефтяной пленки на морской поверхности по контрасту яркости в ближнем ИК-диапазоне // Процессы в геосредах. 2015. № 1. С. 48–53.

Еще один обзор, посвящённый определению различных параметров нефтепроявлений: формы и размеров, растекания и дрейфа на поверхности моря, определения места всплытия, времени жизни на морской поверхности, частоты выбросов и периодичности работы подводных источников, а также толщины плёнок и оценки объёмов выбросов.

📖 Матросова Е.Р., Ходаева В.Н., Иванов А.Ю. Определение характеристик естественных нефтепроявлений и их подводных источников по данным дистанционного зондирования // Исследование Земли из Космоса, 2022, № 2, C. 3–27. https://doi.org/10.31857/S0205961422020063

Рассматриваются и систематизируются основные значимые параметры естественных нефтепроявлений и возможности их определения по данным космической радарной и оптической съёмки. Показано, что анализ временных рядов оптических и радарных изображений позволяет определить основные/характерные параметры естественных нефтепроявлений, с помощью которых становится возможным узнать местоположение их подводных источников, интенсивность и объёмы выбросов, геолого-геофизическое состояние и, в некоторой степени, перспективы нефтегазоносности региона. Обсуждаются возможности, ограничения и перспективы использования данных дистанционного зондирования для рассматриваемых задач.

Для оценки толщины плёнок применяют (весьма приблизительные) методики BAOAC и ASTM, позволяющие по визуальному цвету нефтяной пленки определить её толщину.

#нефть

Спутник ДЗЗ

18 Oct, 06:29


ЛОМО и ИКИ РАН спроектировали съёмочную систему ДЗЗ для малых космических аппаратов [ссылка]

АО «ЛОМО» (концерн «Калашников») в сотрудничестве с Институтом космических исследований (ИКИ) РАН спроектировало компактную съёмочную систему дистанционного зондирования Земли (ДЗЗ) высокого разрешения для малых космических аппаратов. Она построена на основе зеркально-линзовой оптической схемы Ричи-Кретьена и предназначена для работы в режиме кадровой съемки. Диаметр главного зеркала — 334 мм, длина телескопа — 700 мм. В настоящее время ведутся работы по изготовлению опытного образца изделия.

ЛОМО и ИКИ РАН взаимодействуют с предприятиями-изготовителями космических аппаратов ДЗЗ: АО «РКЦ «Прогресс» (г. Самара), ВНИИЭМ (г. Москва), РКК «Энергия» (г. Королев, Московская область), — которые заинтересованы в установке разрабатываемого телескопа на борт перспективных малых спутников.

Сотрудничество ЛОМО и ИКИ РАН позволит выстроить эффективную схему изготовления и отработки конкурентоспособной аппаратуры для малых спутников ДЗЗ.

#россия

Спутник ДЗЗ

17 Oct, 12:15


Независимо от количества зимнего льда, воды у побережья Чукотки и Аляски оживают каждую весну благодаря цветению фитопланктона. Цветение образует поразительные узоры из голубой и зеленой морской воды, такие, как на 📸 снимке Чукотского моря, сделанном 18 июня 2018 года спутником Landsat 8.

Из Берингова пролива в южную часть Чукотского моря вытекают две основные водные массы. Одна из них, известная как “воды Берингова моря”, — прохладная, соленая и богатая питательными веществами. Эти воды способствуют росту фитопланктона, особенно диатомовых водорослей. Вторая масса морской воды известна как “прибрежные воды Аляски”. Она более теплая, менее соленая и бедная питательными веществами. Численность диатомов в таких водах обычно ниже, но здесь хорошо себя чувствует другой вид водорослей — кокколитофоры. Они и придают воде молочно-бирюзовый оттенок.

#снимки #вода

Спутник ДЗЗ

17 Oct, 09:06


Фонд НТИ создаст центр разработки малых спутников и космических систем [ссылка]

Фонд поддержки проектов Национальной технологической инициативы (НТИ) создаст центр по разработке перспективных технологий и космических систем и сервисов, в том числе малых спутников.

Конкурс среди организаций, объявленный фондом, завершится 9 ноября.

Научные и образовательные организации высшего образования могут подать заявку на грантовую поддержку создания в своей структуре Центра компетенций Национальной технологической инициативы, который будет заниматься разработкой технологий, позволяющих создать группировки малых спутников, а в дальнейшем — развитием моделей их использования и спутниковых систем и сервисов на их базе. Центр также будет заниматься подготовкой кадров и трансфером технологий.

🔗 Страница конкурса

Исследовательское направление будет включать комплексное проектирование наземного и космического сегмента и информационных сервисов работы с данными, разработку технологий создания и оптимизации платформ малых спутников, полезных нагрузок для этих платформ. Среди них — системы дистанционного зондирования, связи, технологии защиты передачи данных и другие направления.

Работа центра внесет вклад в реализацию разработанной экспертами НТИ концепции цифрового бесшовного неба, предусматривающей свободное и безопасное выполнение полетов беспилотных и пилотируемых воздушных судов при поддержке инфраструктуры связи и наблюдения, также уточнили в организации.

Генеральный директор Фонда НТИ Вадим Медведев считает, что новый центр может быть задействован в формирующемся национальном проекте "Развитие космической деятельности РФ", рассчитанном на период до 2030 года и на перспективу до 2036 года.

"Собственная группировка спутников обеспечит территорию страны широкополосной связью и дистанционным зондированием Земли, доступным интернетом в самых разных ее уголках, включая связь для интернета вещей. <…> Это новый тип Центров компетенций НТИ, который отличается глобальностью задач, зонтичным характером и расширенными статьями расходов. Со своей стороны, мы стараемся сделать механизмы поддержки универсальными для достижения разных целей", — заключил В. Медведев.

#россия #конкурс

Спутник ДЗЗ

17 Oct, 07:25


Выпущены данные EMIT для идентификации минералов

Новый набор данных миссии по исследованию источников минеральной пыли NASA EMIT — EMIT Level 2B Estimated Mineral Identification and Band Depth and Uncertainty 60-meter (EMITL2BMIN) — служит для исследования признаков радиационного воздействия, связанного с пылью. Основное внимание уделяется минералам: кальциту, хлориту, доломиту, гетиту, гипсу, гематиту, иллиту+мусковиту, каолиниту, монтмориллониту и вермикулиту и некоторым другим.

Таким образом, мы имеем готовые данные для идентификации минералов. Конечно, разработчики предупреждают, что: 1) разделение минералов со схожими спектральными характеристиками (например, тонкозернистый гетит и гематит) — сложная задача и в этой связи данные могут содержать ошибки; 2) возможности использования данных для разведки полезных ископаемых требуют дополнительной проверки. Это ли не повод попробовать новые данные в деле?

#гиперспектр