SVM (Support Vector Machine) — это алгоритм машинного обучения, используемый для задач классификации и регрессии. Он работает на основе нахождения гиперплоскости, которая наилучшим образом разделяет данные на различные классы.
Гиперплоскость — векторное пространство с n измерениями может быть разделено с помощью гиперплоскости, которая является подпространством размерности n−1. В двухмерном пространстве это линия, в трехмерном — плоскость, а в общем случае — гиперплоскость.
Задача SVM заключается в нахождении гиперплоскости, которая максимизирует расстояние (зазор) между ближайшими точками разных классов. Эти ближайшие точки называются опорными векторами.
SVM стремится максимизировать расстояние между классами, что помогает улучшить обобщающую способность модели. Чем больше зазор, тем меньше вероятность ошибки на тестовых данных.