Big Data AI @bigdatai Channel on Telegram

Big Data AI

@bigdatai


@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

Big Data AI (Russian)

Новый канал "Big Data AI" - это идеальное место для всех, кто интересуется современными технологиями в области искусственного интеллекта, машинного обучения и анализа данных. Канал предлагает уникальную возможность погружения в мир больших данных и исследований в области искусственного интеллекта.

@haarrp, администратор канала, делится самой актуальной и интересной информацией о вопросах, задаваемых на собеседованиях по Machine Learning, Data Science, Deep Learning и Нейронным сетям. Вы узнаете о последних трендах в этой области, а также сможете задать вопросы и обсудить интересующие темы с опытными специалистами.

Помимо этого, вы найдете ссылки на другие каналы, посвященные анализу данных, машинному обучению и большим данным. Каналы @data_analysis_ml, @ai_machinelearning_big_data и @itchannels_telegram помогут вам расширить свои знания и навыки в сфере программирования и аналитики данных.

Присоединяйтесь к каналу "Big Data AI" прямо сейчас и станьте частью сообщества людей, увлеченных изучением и применением передовых технологий в области искусственного интеллекта и анализа данных.

Big Data AI

19 Nov, 14:00


🔥 firecrawl-simple — урезанная и оптимизированная версия библиотеки firecrawl! Она позволяет вам быстро конвертировать веб-сайты в готовый для чтения LLM текст.

🔐 Лицензия: AGPL-3.0

🖥 GitHub

@bigdatai

Big Data AI

17 Nov, 13:00


🖥 Activepieces — это ИИ платформа для автоматизации и построения рабочих процессов с поддержкой no-code и open-source, предназначенная для упрощения интеграций между различными сервисами и приложениями, такими как Google Sheets, OpenAI, Discord и другие!

🌟 Она предоставляет пользователям визуальный редактор для построения процессов с использованием условных ветвлений, циклов и перетаскивания элементов.

💡 Пользователи могут воспользоваться готовыми шаблонами для создания своих процессов, а также добавлять собственные «кусочки» кода в TypeScript, чтобы расширять функциональность. Activepieces также поддерживает развертывание как в облаке, так и на собственных серверах, предлагая гибкость в настройке и масштабировании автоматизаций, что особенно удобно для малых и средних компаний, а также разработчиков и технических команд, стремящихся к улучшению производительности и сокращению затрат на интеграцию внешних сервисов.

🖥 Github

@bigdatai

Big Data AI

16 Nov, 11:00


🔍 Эта статья исследует API-ориентированных веб-агентов, предлагая новые подходы к автоматизации взаимодействий с веб-сайтами.

⭐️ Вместо классического веб-скрейпинга авторы предлагают использование открытых и полузакрытых API, создавая агентов, которые могут выполнять сложные задачи, такие как бронирование билетов или составление расписаний, с высокой точностью и эффективностью. Подход улучшает надежность и совместимость агентов, особенно при изменениях интерфейсов сайтов.

📖 Читать: *клик*

@bigdatai

Big Data AI

16 Nov, 09:36


⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/datascienceiot
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy

Big Data AI

15 Nov, 16:00


🖼 AutoVFX — инструмент, позволяющий создавать видео с потрясающими эффектами с помощью ИИ, используя для этого только одно фото и инструкции на человеческом языке!

🔐 Лицензия: MIT

🖥 Github

@bigdatai

Big Data AI

15 Nov, 08:56


✔️ Nous Research запустил бета-версию Forge Reasoning API.

Forge Reasoning API позволяет улучшить возможности популярных LLM, добавив интерпретатор кода и расширенные возможности рассуждений. API использует три архитектуры: поиск по древу Монте-Карло (MCTS), цепочка кода (CoC) и смесь агентов (MoA).

Forge совместим с Hermes 3, Claude Sonnet 3.5, Gemini и GPT 4 и может комбинировать несколько языковых моделей для повышения разнообразия выходных данных. Beta-тестирование API будет сосредоточено на тестировании архитектуры системы рассуждений.
nousresearch.com

✔️ Google устраняет уязвимости в Vertex AI, которые могли привести к утечке моделей ИИ.

Уязвимости, обнаруженные Palo Alto Networks Unit 42, позволяли злоумышленникам получать несанкционированный доступ к данным и извлекать корпоративные модели из системы.

Первая уязвимость, связанная с функцией "пользовательские задания", позволяла повышать привилегии и получать доступ ко всем сервисам данных в проекте. Вторая уязвимость, связанная с функцией "вредоносные модели", позволяла развертывать вредоносные модели и получать доступ ко всем другим настроенным моделям, что создавало серьезный риск утечки конфиденциальных данных.
Google уже установила исправления для устранения этих уязвимостей.
darkreading.com

✔️ JetBrains выпустила обновление 2024.3 для AI Assistant и IDEs.

AI Assistant 2024.3 теперь поддерживает модели Gemini, предоставляя пользователям возможность выбирать между моделями Gemini, OpenAI или локальными моделями. Ассистент также предлагает улучшенное автозавершение кода, расширенное управление контекстом и встроенную генерацию подсказок.

Обновления коснулись IDE JetBrains: PyCharm (добавлена функция AI-внутристроковых подсказок) , WebStorm (реализована улучшенная навигация по компонентам), GoLand (добавлены многострочное завершение, новая функция встроенной подсказки и новые языковые возможности из последних релизов Go), PhpStorm( новые проверки и быстрые исправления для обновления до PHP 8.4) и RubyMine(поддержка Rail 8, более быстрое завершение кода с учетом контекста и улучшенная интеграция модульных тестов).
sdtimes.com

✔️ Red Hat приобретает технологию для снижения стоимости машинного обучения.

Red Hat объявила о намерении приобрести Neural Magic, разработчика проекта vLLM с открытым исходным кодом. Цель приобретения в том, чтобы Red Hat и ее материнская компания IBM могли снизить барьер для входа организаций, желающих запускать рабочие нагрузки машинного обучения без необходимости развертывания серверов, оснащенных GPU.

Neural Magic разработала способ запуска алгоритмов машинного обучения без GPU. Вместо этого компания методы обрезки и квантования для оптимизации моделей, позволяя им работать на доступных процессорах без ущерба для производительности.
computerweekly.com

✔️ Франсуа Шолле покидает Google.

Французский разработчик Франсуа Шолле, создатель Keras, покидает Google после почти 10 лет работы. Keras лежит в основе ряда технологических продуктов: беспилотные автомобили Waymo, рекомендательные системы на YouTube, Netflix и Spotify.

В 2019 году Шолле опубликовал тест Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI), который измеряет способность систем ИИ решать новые задачи на рассуждение. Шолле неоднократно утверждал, что подход, принятый многими крупными лабораториями, разрабатывающими ИИ (внедрение все большего количества данных и вычислительных ресурсов в модели), не позволит достичь ИИ, который будет таким же «умным», как люди.

34-летний Франсуа сообщил в посте X, что он создает новую компанию вместе с «другом», но отказался раскрывать подробности.
techcrunch.com

@ai_machinelearning_big_data

#news #ai #ml

Big Data AI

13 Nov, 09:20


📌Исследование различных типов связей между датасетами для улучшения их поиска.

В исследовании, опубликованном к International Semantic Web Conference, Google Research проанализировал связи между датасетами, доступными в Интернет. Целью исследования заявлена стремление улучшить возможности поиска и использования данных, учитывая их сложные взаимоотношения.

Исследователи выделили 4 ключевые задачи, с которыми сталкиваются пользователи при работе с датасетами:

🟢Поиск. Огромное количество данных в сети затрудняет поиск нужных датасетов.

🟢Оценка достоверности. В отличие от научных публикаций, датасеты редко проходят рецензирование, поэтому пользователям приходится полагаться на метаданные для оценки их надежности.

🟢Цитирование. Корректное цитирование требует наличия постоянных идентификаторов, метаданных и точного описания происхождения данных.

🟢Курирование: Курирование включает сбор, организацию и поддержку датасетов из разных источников, а для этого кураторам необходимо понимать связи между ними.

Чтобы классифицировать отношения между датасетами были использованы 2 основных типа связей: основанные на происхождении (например, версии и подмножества) и не связанные с происхождением (например, тематически похожие).

Для автоматического определения отношений между датасетами применяли 4 метода:

🟠Извлечение отношений из schema.org.
Schema.org - это семантическая разметка метаданных для поисковых ботов на веб-страницах.

🟠Эвристический подход.
Набор правил, разработанных для каждого типа отношений.

🟠Градиентный бустинг деревьев решений (GBDT).
Метод машинного обучения, основанный на классификации.

🟠Модель T5.
Генеративная модель, также используемая для классификации.

Результаты исследования показали, что методы машинного обучения, GBDT и T5, превзошли эвристический подход в точности определения отношений. GBDT продемонстрировал наилучшие показатели F1 в различных категориях, T5 тоже молодец показал схожие результаты.

Однако, даже самые эффективные методы столкнулись с ограничениями из-за недостаточной полноты метаданных. Вывод - необходимость улучшения стандартов метаданных и более широкого использования schema.org для описания связей между датасетами.


🟡Статья в блоге
🟡Arxiv
🟡Поиск по датасетам


@ai_machinelearning_big_data

#AI #ML #Google #Datasets #Search

Big Data AI

12 Nov, 10:03


🔥 pytorch_tabular — это высокоуровневый фреймворк на основе PyTorch, созданный для работы с табличными данными!

🌟 Он упрощает обучение моделей для таких данных, как таблицы или структурированные датасеты, и поддерживает несколько популярных архитектур нейросетей для табличных данных. Фреймворк позволяет гибко настраивать модели с помощью конфигурационных файлов и интегрируется с библиотеками, такими как PyTorch Lightning.

🔐 Лицензия: MIT

🖥 Github

@bigdatai

Big Data AI

12 Nov, 08:01


Вот что ждет в Т-Банке ML-разработчиков, кроме ДМС, крутых офисов и других плюшек:

▪️Актуальный стек. Здесь следят за трендами и быстро внедряют новое.
▪️Улучшения может предложить каждый. Здесь знают, как устроен
продукт, и влияют на его развитие.
▪️Прозрачная система роста. Вы всегда будете знать, какие навыки
нужно подтянуть и как получить повышение.
▪️Вы окажетесь среди профессионалов, у которых можно многому
научиться. А если захотите — можете стать ментором для младших коллег.
Больше о вакансиях ML-разработчиков — здесь.

Устраивайтесь в Т-Банк на позицию ML-разработчика до 23 декабря 2024 года и получайте приветственный бонус в размере одного оклада.

Big Data AI

11 Nov, 17:00


🖼 OmniGen — это универсальная модель для генерации изображений, упрощающая создание различных визуальных контентов!

🌟 Модель объединяет множество методов генерации изображений в одну систему, позволяя создавать изображения по текстовым запросам, а также на основе других изображений. OmniGen минимизирует необходимость в дополнительных модулях или обработке данных, делая процесс гибким и оптимизированным. Модель также поддерживает настройку и тонкую настройку для специализированных задач.

🔐 Лицензия: MIT

📖 Arxiv: *клик*
🖥 Github
🔗 HuggingFace: *клик*

@bigdatai

Big Data AI

11 Nov, 15:02


Освойте универсальные навыки в мире цифровых профессий — научитесь работать с SQL, Python, Power BI и DataLens на бесплатном курсе от Нетологии. В результате вы:

— разберётесь в основах Python для анализа данных и узнаете, как извлекать информацию.
— научитесь делать запросы и отчёты с помощью SQL.
— сможете строить интерактивные дашборды в Power BI и DataLens.

Курс подойдёт новичкам и тем, кто хочет расширить свои навыки.

Также после бесплатного курса вы получите карьерную консультацию и скидку до 50% для продолжения обучения на курсах-профессиях в Нетологии.

Присоединяйтесь бесплатно

Реклама. ООО "Нетология". Erid 2VSb5ycqptg

Big Data AI

11 Nov, 12:08


🔥 Курс — понимание ИИ и нейронных сетей путем ручной настройки параметров!

💡 На этом курсе вы получите возможность самостоятельно настроить параметры сети, помогая автомобилю научиться ездить на специальной игровой площадке. Этот курс отлично подходит как для новичков, так и для тех, кто хочет углубить свои знания в области ИИ.

🌟 Курс охватывает такие ключевые темы, как математика нейронных сетей, роль скрытых слоев и алгоритм Дейкстры для поиска пути. К концу этого курса у вас будет прочное понимание основ ИИ и практический опыт настройки поведения ИИ.

🔗 Ссылка: *клик*


@bigdatai

Big Data AI

11 Nov, 10:08


Яндекс Игры пришли к нам с запросом:

SELECT * 
FROM subscribers
WHERE channel_name = 'bigdatai'
AND technical_skills IN ('SQL', 'Airflow', 'MapReduce', 'DataLens')
AND data_driven_approach = true
AND analytical_mindset = true
AND years_of_experience >= 2
AND fit = true;


Ребята ищут аналитика в свою команду. Яндекс Игры посещают более 40 млн пользователей в месяц, поэтому можно проверять кучу гипотез на крупных выборках и экспериментировать.

ВАЖНО. Проверенные гипотезы не пойдут «в стол», а будут помогать команде принимать взвешенные решения и влиять на развитие продукта.

Если у тебя есть опыт работы с продуктами, аналитический склад ума и необходимые навыки, — это отличный шанс быстро вырасти и прокачаться на интересных задачах.

Описание вакансии здесь, но лучше сразу пишите рекрутеру и договаривайтесь о собеседовании: @danny_md1

Big Data AI

11 Nov, 07:11


📌Руководство по эффективному использованию промптов для LLM от разработчиков из GoogleDeepMind.

Туториал ориентируется на нетехническую аудиторию, которая имеет опыт взаимодействия с большими языковыми моделями.

В первой половине представлены ментальные конструкции природы посттренинга и промптов. Вторая половина содержит более конкретные предписания и высокоуровневую процедуру промпт-инжиниринга.

Авторы, Varun Godbole и Ellie Pavlick подчеркивают, что поиск «идеальной» подсказки — это итеративный процесс, аналогичный настройке модели, который в лучшем случае является эмпирическим, а в худшем - алхимическим.

▶️ Содержание:

🟢Для кого предназначен этот документ?
🟢Зачем нужно это руководство?
🟢Background трейна: предварительная и последующая подготовка
🟢Рекомендации по промптам
🟢Рудиментарное "руководство по стилю" для промптов
🟢Процедура итерации новых системных инструкций
🟢Некоторые мысли о том, когда полезна LLM
🟢Дополнительные ресурсы


📌Лицензирование: Creative Commons Attribution 4.0 International Public License.


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Prompt #Github #Tutorial

Big Data AI

10 Nov, 15:01


🔥 Выпущена версия Ollama 0.4 с поддержкой моделей Meta Llama 3.2 Vision (11B и 90B)!

🔗 Примеры работы модели и ссылка для скачивания: *клик*

@bigdatai

Big Data AI

09 Nov, 14:00


📝 Эта статья изучает использование разреженных автокодировщиков для представления концепций в больших языковых моделях, раскрывая трехуровневую геометрическую структуру таких представлений.

🌟 Исследование описывает базовые структуры, аналогичные кристаллам, обнаруживает пространственную модульность на уровне "мозга" и объясняет глобальные структуры данных, напоминающие галактики. Такой подход помогает понять, как автокодировщики могут лучше классифицировать и структурировать концепты, а также выявлять их зависимости в пространстве признаков.

📖 Читать: *клик*

@bigdatai

Big Data AI

08 Nov, 10:01


🔥 Курс — генеративный ИИ для разработчиков!

🌟 В этом комплексном курсе по генеративному ИИ вы глубоко погрузитесь в мир генеративного ИИ, изучив ключевые концепции, такие как большие языковые модели, предварительная обработка данных и продвинутые методы, такие как тонкая настройка и RAG. С помощью практических проектов с такими инструментами, как Hugging Face, OpenAI и LangChain, вы создадите реальные приложения от резюмирования текста до пользовательских чат-ботов. К концу вы освоите конвейеры ИИ, векторные базы данных и методы развертывания с использованием таких платформ, как Google Cloud Vertex AI и AWS Bedrock.

🕞 Продолжительность: 21:11:20

🔗 Ссылка: *клик*

#курс #machinelearning #ai

@bigdatai

Big Data AI

08 Nov, 08:01


Как работают генеративные технологии, которые лежат в основе большинства визуальных сервисов? Какова их «математическая начинка»? Получите ответ на эти и другие вопросы на бесплатном интенсиве Computer Vision Week! Он пройдёт с 25 по 29 ноября онлайн и поможет вам разобраться в сложных вопросах компьютерного зрения и диффузионных моделей.

Среди организаторов — эксперты, которые создают технологии будущего: Yandex Cloud, Школа анализа данных, YaArt и YaResearch. За 5 дней они расскажут, как устроена генерация изображений на практике: от математических основ и алгоритмов до нейробайесовских методов. Вы также научитесь работать с генеративными технологиями самостоятельно и узнаете, какие горизонты они открывают для разработчиков и исследователей.

Что ещё? Вы не только послушаете лекции, но и сможете попробовать свои навыки на практике — в решении задач. Те, кто успешно справится с отборочными испытаниями и итоговой работой, получат заветный сертификат в портфолио!

Успейте зарегистрироваться до 24 ноября, пока есть места!

Big Data AI

07 Nov, 15:32


🔥 GPTel — это расширение для Emacs, которое позволяет интегрировать ChatGPT непосредственно в редактор!

🌟 С его помощью пользователи могут отправлять текст из буфера Emacs в GPT API, получать ответы и вставлять их обратно в текстовый буфер, что удобно для работы с кодом, текстами и другими задачами, требующими взаимодействия с GPT прямо в редакторе.

🔐 Лицензия: GPL-3.0

🖥 Github

@bigdatai

Big Data AI

07 Nov, 14:00


🤖 ИИ и iGaming — в чем связь?

AI трансформирует индустрию, и знание его возможностей — ключ к успеху.

➡️ Поэтому тебе нужно подписаться на Owner 1win!

На канале ты найдешь:

Анализ трендов — как AI меняет правила игры в индустрии азартных игр;

Инсайты от экспертов — мнения лидеров рынка о будущем iGaming с использованием ИИ;

Новые подходы к монетизации и привлечению игроков.

😍 Присоединяйся к Owner 1win и будь первым!

Big Data AI

07 Nov, 11:58


🌟 SmolLM2: второе поколение компактных LLM от HuggingFace.

Hugging Face представила SmolLM2, новую серию SLM, оптимизированных для работы на устройствах c ограниченными ресурсами и предназначенных для выполнения задач генерации и обобщения текста на английском языке и вызова функций.

Модели SmolLM2 были обучены на миксе из наборов данных FineWeb-Edu, DCLM и Stack. Тестирование после обучения показало превосходство старшей модели SmolLM2-1.7B над Meta Llama 3.2 1B и Qwen2.5-1.5B.

Модели доступны в трёх конфигурациях: 135М, 360М и 1.7B параметров, каждая модель имеет свою Instruct-версию, а 1.7B и 360М еще и официальные квантованные версии GGUF:

SmolLM2-1.7B🟢SmolLM2-1.7B-Instruct🟢Instruct GGUF

SmolLM2-360M🟠SmolLM2-360M-Instruct 🟠Instruct GGUF

SmolLM2-135M 🟠SmolLM2-135M-Instruct 🟠Instruct GGUF от комьюнити


▶️Пример запуска модели SmolLM2-1.7B в полной точности на Transformers :

from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-1.7B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))


📌Лицензирование: Apache 2.0 License.


🟡Коллекция моделей на HF
🟡Demo SmolLM2 1.7B


@ai_machinelearning_big_data

#AI #ML #SLM #Huggingface #SmolLM2

Big Data AI

07 Nov, 06:29


👩‍💻 Attention OCR — модель распознавания текста с использованием TensorFlow, применяя сочетание сверточных нейронных сетей (CNN), моделей последовательностей (seq2seq) и визуального внимания для выделения текста в изображениях. Доступна установка через Python, поддерживается Google Cloud ML Engine.

🌟 Модель настраивается для создания датасетов и визуализации внимания на тестовых данных, а также поддерживает экспорт в формате SavedModel для серверного развертывания, включая интеграцию с TensorFlow Serving.

🔐 Лицензия: MIT

🖥 Github

@bigdatai

Big Data AI

07 Nov, 04:28


💪 Уже есть опыт работы с хранилищами данных, но хочешь прокачать скилы и открыть новые карьерные горизонты?

Тогда скорее залетай на бесплатный ИТ-интенсив в Открытых школах Т1 для аналитиков платформы данных (DWH) — регистрация до 8 ноября!

Открытые школы — это возможность усилить свои навыки и получить оффер от одного из лидеров* российского ИТ-рынка — Холдинга Т1. И все это за месяц, онлайн и в удобное вечернее время.

Что ты получишь?

🔹Уникальный рыночный опыт и масштабные ИТ-проекты: мы одни из первых, кто внедряет технологии для управления данными. Выпускники школ смогут присоединиться к проекту по созданию новой технологической платформы данных в банковской сфере.
🔹Быстрый рост в ИТ при поддержке экспертов и топовых преподавателей. Карьерные треки для выпускников Открытых школ позволяют быстро расти в профессии в Т1.
🔹Работа в бигтех-компании: ИТ-аккредитация, современный техстек, ДМС, удаленка, крутые офисы, спорт, обучение, митапы, ИТ-конференции, программы признания и развития, а также многое другое от Т1.

Более 900 специалистов уже прошли этот путь — теперь твоя очередь! Читай подробности в карточках ☝️ Старт обучения уже 11–12 ноября! Ссылка для подачи заявки.

Реклама. ООО «Т1» ИНН: 7720484492. Erid: 2SDnjcEokmZ

Big Data AI

01 Nov, 14:00


🖼 Long-LRM — система для высококачественной 3D-реконструкции больших сцен на основе Гауссовых сплайнов. Она может обрабатывать длинные последовательности изображений и создавать 3D-реконструкции с большой областью покрытия всего за 1.3 секунды. Модель использует токены Plücker и архитектуры с блоками Mamba2 и Transformer

🔗 Ссылка: *клик*
📖 Arxiv: *клик*

@bigdatai

Big Data AI

31 Oct, 11:01


📝 Эта статья представляет метод LiNeS (Layer-increasing Network Scaling), направленный на устранение проблемы "катастрофического забывания" при дообучении больших моделей

🌟 LiNeS корректирует параметры, масштабируя их по глубине слоев сети, что позволяет сохранить общие признаки на верхних слоях и адаптировать глубокие слои под конкретные задачи. Это улучшает производительность и обобщение в мультизадачных сценариях и при объединении моделей, таких как RLHF

📖 Читать: *клик*

@bigdatai

Big Data AI

31 Oct, 09:01


Представьте: вы развиваете IT-продукт. Бессонные ночи, жаркие обсуждения фич и месяцы кодинга пройдены — пора искать клиентов. Вы сформировали позиционирование, настроили рекламу, начали работать со СМИ и соцсетями. Постепенно ваши усилия стали приносить плоды: количество пользователей постепенно увеличивается.

И тут возникает вопрос: где построить надежную, безопасную и простую в управлении IT-инфраструктуру? Нужно учесть скорость развертывания, чтобы быстро вывести продукт на рынок, безопасность данных клиентов и высокую производительность.

Заходите в единую панель управления Selectel и выбирайте конфигурацию, которая подходит именно вам. А если потребности в ресурсах будут меняться в большую или меньшую сторону, вы сможете докупить необходимые мощности или заморозить неиспользуемые.

Big Data AI

30 Oct, 15:01


🔥 AutoRAG — это инструмент для поиска оптимального конвейера RAG для «ваших данных». Вы можете автоматически оценивать различные модули RAG с помощью собственных оценочных данных и находить лучший конвейер RAG для вашего собственного варианта использования

🔐 Лицензия: Apache-2.0

🖥 Github

@bigdatai

Big Data AI

30 Oct, 10:53


✔️ xAI добавила функцию распознавания изображений в Grok AI.

Теперь пользователи могут загружать изображения и задавать вопросы, основанные на их содержании. Grok может выполнять глубокий анализ изображения и объяснять даже визуальные шутки. В настоящее время функция доступна только для статичных изображений.

Илон Маск намекнул в X, что на очереди - возможность загрузки файлов. В августе xAI выпустила модели Grok-2 и Grok-2 Mini. Обе модели доступны в чат-боте Grok для пользователей X Premium и X Premium+.

gadgets360.com

@bigdatai

Big Data AI

29 Oct, 14:01


🖥 Использование PostrgreSQL для полнотекстового поиска в приложениях!

💡 Полнотекстовый поиск — это неотъемлемая часть современных приложений, особенно тех, которые работают с большими объемами текстовой информации, будь то блог-платформы, системы управления контентом или новостные агрегаторы. Какое бы приложение вы не разрабатывали, добавление возможностей полнотекстового поиска может значительно улучшить пользовательский опыт. В этой статье мы рассмотрим, какие основные возможности полнотекстового поиска предлагает PostgreSQL, какие преимущества это дает, и приведем примеры запросов

🔗 Ссылка: *клик*

@sqlhub

Big Data AI

28 Oct, 13:00


🎧 MuVi может создавать музыку, соответствующую визуальным эффектам видео, анализируя кадры!

MuVi использует ритмическую синхронизацию и может управлять стилем и жанром музыки.

https://muvi-v2m.github.io

@bigdatai

Big Data AI

27 Oct, 12:00


🖥 MineDojo — это исследовательская платформа, разработанная для создания многоцелевых ИИ-агентов с помощью среды Minecraft. Проект предоставляет инструменты и API, которые позволяют агентам взаимодействовать с Minecraft для выполнения сложных задач, таких как построение, крафтинг, исследование и другие

🌟 MineDojo создан для поддержки исследований в области ИИ, обучая агентов на большом количестве сценариев и примеров поведения. Платформа включает в себя предварительно настроенные задачи и сценарии, а также возможности для создания собственных агентов

▪️Github


@bigdatai

Big Data AI

27 Oct, 10:00


⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Linux: t.me/linuxacademiya
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Angular: https://t.me/+qIJAuSEb2MQyMDJi

💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy

Big Data AI

26 Oct, 16:19


🚀 Pandas → Polars → SQL → PySpark

@bigdatai

Big Data AI

26 Oct, 13:28


🌟 Mochi 1: открытая text-to-video модель генерации видео.

Mochi 1 - модель от компании Genmo для генерации видео на новой архитектуре Asymmetric Diffusion Transformer (AsymmDiT).

Mochi 1 была обучена с нуля и получила 10 млрд. параметров. Это самая большая генеративная модель видео, когда-либо выпущенная в открытый доступ.

Модель способна генерировать видео с разрешением 480p длительностью до 5,4 секунд со скоростью 30 кадров в секунду. AsymmDiT обрабатывает текстовые запросы используя одну языковую модель T5-XXL.

Вместе с Mochi 1 Genmo выпустила в открытый доступ свой видеокодер AsymmVAE, который сжимает видео до 128-кратного размера, с пространственным 8x8 и временным 6x сжатием до 12-канального латентного пространства.

Genmo планирует выпустить улучшенную вервию - Mochi 1 HD до конца года, которая будет поддерживать разрешение 720p.


⚠️ Для работы модели требуется не менее 4 GPU H100.

⚠️ В некоторых случаях при экстремальном движении могут возникать незначительные деформации и искажения.

⚠️ Mochi оптимизирована для фотореалистичных стилей, поэтому не очень хорошо работает с анимированным контентом.

▶️ Локальная установка и инференс c Gradio UI или в CLI:

# Clone repo
git clone https://github.com/genmoai/models
cd models

# Install using uv
pip install uv
uv venv .venv
source .venv/bin/activate
uv pip install -e .

# Inference with Gradio UI
python3 -m mochi_preview.gradio_ui --model_dir "<path_to_model_directory>"

# Inference with CLI
python3 -m mochi_preview.infer --prompt "%prompt%" --seed 1710977262 --cfg_scale 4.5 --model_dir "<path_to_model_directory>"


📌Лицензирование: Apache 2.0 license.


🟡Страница проекта
🟡Модель
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Text2Video #AsymmDiT #Mochi1

Big Data AI

26 Oct, 10:00


🖥 Llama-3.1-Nemotron-70B: набор файнтюн-моделей и датасет HelpSteer2 от NVIDIA.

NVIDIA опубликовала на HuggingFace 4 версии Llama-3.1-Nemotron-70B:

▶️ Llama-3.1-Nemotron-70B-Instruct

Модель получила улучшение в задачах ответа на вопросы и выполнение пользовательских инструкций. Обучение проводилось с использованием RLHF (REINFORCE) на основе Llama-3.1-Nemotron-70B-Reward и датасета HelpSteer2-Preference.

Nemotron-70B-Instruct достигла высоких результатов в тестах Arena Hard (85.0), AlpacaEval 2 LC (57.6) и GPT-4-Turbo MT-Bench (8.98), и обошла GPT-4o и Claude 3.5 Sonnet.

🟠Llama-3.1-Nemotron-70B-Instruct-HF

Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.

Квантованные версии Llama-3.1-Nemotron-70B-Instruct-HF в формате GGUF с разрядностями от 1-bit (16.75 Gb) до 8-bit (74.98 Gb).

▶️ Llama-3.1-Nemotron-70B-Reward

Модель с функционалом чата, рассуждений и специальными навыками для оценки качества ответов других LLM. Она использует английский язык и способна оценивать ответы длиной до 4096 токенов, присваивая им баллы, отражающие их качество.

Основана на Llama-3.1-70B-Instruct Base и использует комбинацию методов Bradley Terry и SteerLM Regression Reward Modelling.

Nemotron-70B-Reward занимает первое место в RewardBench.

🟠Llama-3.1-Nemotron-70B-Reward-HF

Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.

Квантованная версия Llama-3.1-Nemotron-70B-Reward-HF в формате MLX (40 Gb).

Вместе с моделями опубликован датасет HelpSteer2 - набор данных на английском языке, предназначенный для обучения reward-моделей, которые используются для повышения полезности, фактической точности и связности ответов других LLM.

HelpSteer2 содержит 21 362 строки, каждая из которых включает в себя запрос, ответ и пять аннотированных человеком атрибутов ответа: полезность, правильность, связность, сложность и многословность.

⚠️ Представленные модели требуют систему с как минимум 4 GPU NVIDIA (40 Gb) или 2 GPU (80 Gb) и 150 Gb свободного места на диске.

⚠️ Для локального развертывания Llama-3.1-Nemotron-70B без поддержки Transformers рекомендуется использовать NVIDIA NeMo Framework и TRT-LLM.


📌Лицензирование моделей: Llama 3.1 Community License.

📌Лицензирование датасета : CC-BY-4.0


🟡Коллекция моделей на HF
🟡Arxiv
🟡Датасет
🟡Demo


@ai_machinelearning_big_data

#AI #ML #LLM #Nemotron #NVIDIA
🌟 Важным преимуществом новой версии стала её совместимость с широким спектром аппаратного обеспечения NVIDIA, включая архитектуры Ampere, Hopper и Turing. Модель оптимизирована для работы на различных GPU, от мощных H100 до более доступных A100

🔗 Подробнее: *клик*

@bigdatai

Big Data AI

26 Oct, 08:02


Прими участие в «Хакатоне по разработке кибериммунных технологий 3.0» от «Лаборатории Касперского» с призовым фондом 1 000 000 рублей!

Регистрация на хакатон открыта до 15 ноября: https://cnrlink.com/cyberimmunehack3bidgata

Приглашаем разработчиков, аналитиков, архитекторов ПО, экспертов по информационной безопасности и студентов программирования и кибербезопасности. Участвуй индивидуально или в команде до 5 человек.

Тебе предстоит разработать систему удалённого управления автомобилем для каршеринга, устойчивую к кибератакам. Специальных знаний в автомобильной отрасли не требуется — задача будет понятна всем, независимо от опыта.

Это твой шанс прокачать навыки в кибербезопасности и пообщаться с экспертами «Лаборатории Касперского».

Ключевые даты:
• 15 октября – 15 ноября – регистрация участников
• 8 ноября – митап с экспертами и игра «Огнеборец»
• 15 ноября – старт хакатона
• 17 ноября – дедлайн загрузки решений
• 22 ноября – подведение итогов и объявление победителей

Регистрируйся, прояви себя и внеси вклад в безопасность каршеринговых сервисов: https://cnrlink.com/cyberimmunehack3bidgata

Реклама. АО «Лаборатория Касперского». ИНН 7713140469. erid: LjN8KEigF

Big Data AI

25 Oct, 08:26


🔥 Полезный список из 30 наиболее значимых научных статей по ИИ, которые оказывают сильное влияние на современные исследования и разработки в этой области. Этот список охватывает различные аспекты, такие как машинное обучение, глубокое обучение, обработка естественного языка и многое другое!

🔗 Ссылка: *клик*

@bigdatai

Big Data AI

24 Oct, 13:19


🔥 Anthropic обновила модели Claude 3.5 Sonnet и Claude 3.5 Haiku, а также представила новую функцию управления Claude компьютером!

🌟 Обновленный Claude 3.5 Sonnet демонстрирует широкомасштабные улучшения в бенчмарках, особенно в задачах агентного кодирования и использования инструментов. В кодировании он повышает производительность на SWE-bench Verified с 33,4% до 49,0%, набрав баллов больше чем все общедоступные модели, включая модели рассуждений, такие как OpenAI o1-preview и специализированные системы, разработанные для агентного кодирования

💡 Управление компьютером — это новая экспериментальная функция, позволяющая ИИ взаимодействовать с пользовательскими интерфейсами компьютера для выполнения действий в программах, как будто это делает человек. Claude способен автоматизировать рутинные операции: открывать приложения, взаимодействовать с окнами и системными функциями.

🔗 Подробнее на сайте Anthropic: *клик*


@bigdatai

Big Data AI

24 Oct, 12:02


🖥 Addition is All You Need for Energy-efficient Language Models — статья, которая описывает новый метод повышения энергоэффективности языковых моделей

⭐️ Авторы предлагают использовать алгоритм L-Mul, который заменяет операции с плавающей запятой на сложения целых чисел. Это значительно снижает энергопотребление на аппаратном уровне при обработке тензоров и может повысить точность по сравнению с традиционными 8-битными операциями. Метод протестирован на различных задачах и показал минимальные потери в точности

🔗 Ссылка: *клик*

@bigdatai

Big Data AI

23 Oct, 08:54


Машинное обучение работает

Big Data AI

22 Oct, 19:35


⚡️ Pangea-7B - полностью открытый MLLM для 39 языков

Обучен на основе разнообразного набора данных с 6 миллионами мультиязычных мультимодальных данных для настройки инструкций, охватывающих 39 языков.

Полностью открытый дотаяет, код и контрольные точки

▪️Модель: https://huggingface.co/collections/neulab/pangea-6713c3b0d78a453906eb2ed8
▪️Документация: https://huggingface.co/papers/2410.16153

@bigdatai

Big Data AI

22 Oct, 17:46


🔥 model2vec — реализация модели для обучения эмбедингов (embeddings) нейросетевых моделей. Основная идея проекта — создание представлений моделей, которые могут быть использованы для оценки схожести между моделями, их кластеризации или других задач.


Model2Vec - библиотека для создания компактных и быстрых моделей на основе предобученных Sentence Transformer моделей.

Model2Vec позволяет создавать эмбединг-модели слов и предложений, которые значительно меньше по размеру, но при этом сопоставимы по производительности с исходными Sentence Transformer моделями.

Отличительные особенности:

🟢быстрая дистилляция, процесс создания модели занимает несколько минут;

🟢быстрый инференс, в 500 раз быстрее на CPU относительно родительской модели;

🟢BYOM и BYOV, можно использовать на любой Sentence Transformer модели с любым словарем;

🟢мультиязычность, все что нужно - только мультиязычная модель в качестве источника;

🟢интеграция с Huggingface, загрузка\выгрузка моделей привычными from_pretrained и push_to_hub.

Пайплайн Model2Vec трехэтапный. На первом этапе словарь пропускается через модель Sentence Transformer для получения векторов эмбедингов для каждого слова.

Далее, размерность полученных эмбеддингов сокращается с помощью метода главных компонент (PCA). Наконец, применяется zipf-взвешивание для учета частотности слов в словаре.

Model2Vec работает в двух режимах:

🟠Output, в котором модель работает подобно Sentence Transformer, используя subword токенизацию;

🟠Vocab, в котором создается набор статических эмбедингов слов, аналогично GloVe или Word2Vec.

Оценку производительности Model2Vec делали на наборе данных MTEB на задачах PEARL (оценка качества представления фраз) и WordSim (оценка семантической близости слов).

Результаты показывают, что Model2Vec превосходит по производительности GloVe и модели, основанные на WordLlama по всем задачам оценки.


🌟 Репозиторий предоставляет набор инструментов и инструкций для работы с этими представлениями, включая подготовку данных, обучение и использование. В нем также есть примеры использования и инструкции по запуску.

▪️GitHub

@bigdatai

Big Data AI

22 Oct, 15:49


Стать сотрудником Яндекса быстрее и проще, чем кажется. Участвуйте в днях быстрого найма: решите тестовое, пройдите несколько секций собеседования и получите офер за несколько дней.

Ближайшее мероприятие:

• 9-11 ноября — для продуктовых и аналитиков данных, офер за 3 дня в команды Финтеха и Яндекс Практикума.

Зарегистрироваться

Big Data AI

21 Oct, 14:01


🖥 EfCore.SchemaCompare — инструмент для сравнения схем баз данных Entity Framework Core (EF Core). Он позволяет проверять различия между базой данных и миграциями, обеспечивая удобный способ отслеживания изменений в схемах данных

🌟 Этот инструмент может быть полезен для управления версиями баз данных и предотвращения ошибок, связанных с несовпадением структуры данных при разработке приложений на EF Core

▪️GitHub

@sqlhub

Big Data AI

20 Oct, 12:01


🔥 Ditto — это простой инструмент для автоматической генерации кода. Он позволяет пользователю описать приложение на языке, близком к естественному, а затем создает полноценное многокомпонентное приложение Flask. Ditto использует языковую модель для построения маршрутов, шаблонов и статических файлов без необходимости вручную писать код

🌟 Основная цель проекта — упростить процесс разработки веб-приложений, автоматизируя создание структуры кода на основе текстового описания

🔐 Лицензия: MIT

▪️Github

@bigdatai

Big Data AI

20 Oct, 10:19


🌟 Zamba2-Instruct: две гибридные SLM на 2.7 и 1.2 млрд. параметров.

Zamba2-Instruct - семейство инструктивных моделей на архитектуре Mamba2+Transformers для NLP-задач.

В семействе 2 модели:

🟢Zamba2-1.2B-instruct;
🟠Zamba2-2.7B-instruct.

Высокая производительность семейства по сравнению с релевантными Transformers-only моделями достигается за счет конкатенации эмбедингов модели с входными данными для блока внимания и использование LoRA projection matrices к общему MLP-слою.

Модели файнтюнились (SFT+DPO) на instruct-ориентированных наборах данных (ultrachat_200k, Infinity-Instruct, ultrafeedback_binarized, orca_dpo_pairs и OpenHermesPreferences).

Тесты Zamba2-Instruct продемонстрировали внушительную скорость генерации текста и эффективное использование памяти, обходя MT-bench более крупные по количеству параметров модели/ (Zamba2-Instruct-2.7B превзошла Mistral-7B-Instruct-v0.1, а Zamba2-Instruct-1.2B - Gemma2-2B-Instruct)

⚠️ Для запуска на СPU укажите use_mamba_kernels=False при загрузке модели с помощью AutoModelForCausalLM.from_pretrained.


▶️Локальная установка и инференс Zamba2-2.7B-Instruct:

# Clone repo
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2

# Install the repository & accelerate:
pip install -e .
pip install accelerate

# Inference:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)

user_turn_1 = "user_prompt1."
assistant_turn_1 = "assistant_prompt."
user_turn_2 = "user_prompt2."
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)

input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))



📌Лицензирование : Apache 2.0 License.


🟡Набор моделей на HF
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #SLM #Zamba2 #Instruct

Big Data AI

18 Oct, 16:00


🖥 FacePoke — это приложение для интерактивной трансформации лиц в реальном времени. Пользователь может загружать портреты и перемещать головы персонажей по клику, изменяя их положение. Для достижения наилучших результатов рекомендуется использовать собственное оборудование (например, GPU). Проект использует алгоритмы из LivePortrait и предназначен для работы на локальной машине или через Docker

🖥 Язык: JavaScript

🔐 Лицензия: MIT

▪️Github

@bigdatai

Big Data AI

16 Oct, 17:09


📚 Пришло время провести розыгрыш подарков для буста вашей карьеры

На этот раз мы разыграем целую коллекцию актуальных и нужных книг Дата Саентиста.

Условия просты:
👉 подписаться на Machine Learning,
👉 подписаться на Нескучный Data Science

Каждый победитель получит Telegram Premium и одну из книг, которые рекомендуют прочитать авторы каналов:

📖 System Design. Машинное обучение. Подготовка к сложному интервью | Сюй Алекс
📖 Глубокое обучение Курвилль Аарон, Гудфеллоу Ян
📖 Как быть успешным в Data Science.
📖 Все, что нужно, чтобы понимать математику в одном толстом конспекте
📖 Илон Маск | Айзексон Уолтер

Итоги подведем при помощи бота, который рандомно выберет победителя. Всем удачи ❤️

P.S. Не забывайте ставить огонек под этим постом. Поговаривают, что шанс на победу может увеличится ))) 🔥

Big Data AI

16 Oct, 16:01


Полностью локальный Super SDK, предоставляющий простой, унифицированный и мощный интерфейс для вызова более 200 LLM.

Language: TypeScript
#ai #ai_agents #anthropic #language_model #llm #llmops #openai #prompt_engineering #togetherai #typescript
Stars: 277 Issues: 0 Forks: 5

https://github.com/adaline/gateway

@bigdatai

Big Data AI

16 Oct, 14:56


🌟 Возвращение RNN: LSTM и GRU — все, что нам было нужно?

Архитектура Transformer доминирует в моделировании последовательностей уже несколько лет, демонстрируя отличные результаты в задачах NLP, машинного перевода и генерации текста. Главный недостаток Transformer — они долго считают длинные последовательности. А если вычислительных ресурсов мало, то реализация занимает либо много времени, либо требует их увеличения.

Авторы исследования предлагают вернуться к RNN, ведь они быстрее считают и параллельно учитывают контекст. Чтобы отвязаться от обратного распространения ошибки (BPTT), которая требует линейного времени обучения, применяется алгоритм параллельного сканирования за счет устранения зависимости от срытых состояний из гейтов LSTM и GRU.

В предлагаемом методе представлены "уменьшенные" LTSM и GRU - minLSTM и minGRU. Они не только обучаются параллельно, но и используют значительно меньше параметров, чем их старшие аналоги.

Минимализм версий достигается следующим образом:

🟢Устранение зависимостей скрытых состояний из гейтов.
В minLSTM и minGRU input, forget и update gate зависят только от входных данных, а не от предыдущих скрытых состояний.

🟢Отказ от ограничения диапазона candidate hidden state.
В традиционных LSTM и GRU функция гиперболического тангенса используется для ограничения диапазона значений скрытых состояний. В minLSTM и minGRU это ограничение снимается.

🟢Неизменность масштаба выходных данных во времени (только для minLSTM).
Для minLSTM выполняется нормализация forget и input гейтов, чтобы гарантировать, что масштаб состояния ячейки не зависит от времени.

Результаты экспериментов:

🟠Время выполнения: minLSTM и minGRU скорость обучения по сравнению с LSTM и GRU, больше в 1361 раз для последовательности длиной 4096;

🟠Задача выборочного копирования: minLSTM и minGRU успешно справились, в отличие от S4, H3 и Hyena;

🟠Обучение с подкреплением на датасете D4RL: minLSTM и minGRU обошли Decision S4 и показали производительность, сопоставимую с Decision Transformer, Aaren и Mamba;

🟠Языковое моделирование: minLSTM, minGRU, Mamba и Transformer показывают одинаковые результаты, но Transformer требует значительно большего количества шагов обучения.

Прикладная реализация численно-устойчивой в логарифмическом пространстве версии метода minGRU на Pytorch представлена в репозитории на Github.

▶️ Локальная установка и запуск minGRU в последовательном и параллельном режиме :

# Install miniGRU-pytorch
pip install minGRU-pytorch

# Usage
import torch
from minGRU_pytorch import minGRU

min_gru = minGRU(512)
x = torch.randn(2, 1024, 512)
out = min_gru(x)
assert x.shape == out.shape

# Sanity check
import torch
from minGRU_pytorch import minGRU

min_gru = minGRU(dim = 512, expansion_factor = 1.5)
x = torch.randn(1, 2048, 512)

# parallel

parallel_out = min_gru(x)[:, -1:]

# sequential

prev_hidden = None
for token in x.unbind(dim = 1):
sequential_out, prev_hidden = min_gru(token[:, None, :], prev_hidden, return_next_prev_hidden = True)
assert torch.allclose(parallel_out, sequential_out, atol = 1e-4)


📌Лицензирование : MIT License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #RNN #miniGRU

Big Data AI

15 Oct, 11:30


🖥 MegaBlocks — это легковесная библиотека от Databricks для обучения моделей с использованием смеси экспертов (Mixture-of-Experts, MoE). Она включает оптимизированные MoE-слои, поддерживает параллельное обучение данных и экспертов, а также использует алгоритмы, которые позволяют повысить эффективность тренировки

🌟 Библиотека интегрирована с Megatron-LM и предназначена для ускорения работы больших языковых моделей за счет использования разреженных вычислений и сокращения объема данных без потерь в производительности

▪️Github

@bigdatai

Big Data AI

15 Oct, 09:23


Бизнесу данные нужны как воздух📊

На их основе компании принимают важные стратегические решения. Поэтому специалисты, которые собирают, обрабатывают и анализируют данные, всегда востребованы.

Таких профессионалов готовят на курсе «Аналитик данных» от МФТИ и Нетологии. За 10 месяцев вы получите фундаментальные знания, актуальные навыки и кейсы в портфолио.

Вы научитесь:

- использовать Python для анализа данных;
- применять методы ИИ в своих задачах;
- работать с базами данных;
- визуализировать данные.

После обучения получите дипломы о профессиональной переподготовке от МФТИ и Нетологии. Центр развития карьеры поможет с трудоустройством, резюме и портфолио.

Освойте профессию на стыке IT и бизнеса

Реклама. ООО "Нетология". Erid 2VSb5zBiKfv

Big Data AI

14 Oct, 17:00


Большая шпаргалка по SQL — внутри ждёт всё, от основных команд до продвинутых фишек, вроде оконных функций.

— Основные команды SQL;
— SOL Joins;
— SQL Unions, Intersect, Except;
— Временные таблицы SQL, таблицы просмотра, CTE;
— Ранги SQL.

Сохраняйте себе, чтобы не потерять.

@bigdatai

Big Data AI

14 Oct, 15:00


Вечерний митап для ML-инженеров в Белграде и онлайн

📅 17 октября в 18:00 собираемся в хабе «Сербская Роза», чтобы обсудить тренды, новые подходы, решения и вызовы индустрии в неформальной обстановке.

Спикеры и темы докладов:

🔸 Илья Ирхин, руководитель подразделения аналитики в Яндекс Еде. Подробно рассмотрит рекламу ресторанов в сервисе: аукцион, ранжирование, ценообразование

🔸 Дмитрий Солодуха, руководитель группы в Алисе и Умных устройствах Яндекса. Покажет, как мы учим Алису откликаться без имени

🔸 Антон Клочков, руководитель подгруппы распознавания текста в VLM в Яндекс Поиске. Расскажет о развитии навыков распознавания текста в VLM

🔸 Пётр Вытовтов, руководитель группы в Яндекс Погоде. Рассмотрит трансформеры сервиса и расскажет, как начать прогнозировать до миллиметра осадков

После докладов офлайн-участников ждёт нетворкинг с экспертами из разных компаний!

📎 Регистрация и подробности тут.

Ждём вас на ML Party в Белграде!

Реклама. ООО "Яндекс", ИНН 7736207543.

Big Data AI

14 Oct, 10:00


🔈 Open NotebookLM — конвертируйте ваши PDF документы в подкасты, используя ИИ модели с открытым кодом (Llama 3.1 405B, MeloTTS, Bark)!

🔗 Huggingface: *клик*

@bigdatai

Big Data AI

14 Oct, 08:01


Стать Data-инженером за 120 часов

14 октября в Слёрме стартует поток курса «Data-инженер»: 88 часов практики и 32 часа теории.

Будем работать с большими данными:

✔️ Сбор, хранение и обработка
✔️ Визуализация и отчетность
✔️ Интеграция

⚙️ Освоим инструменты и технологии для аналитики и обработки данных и научимся эффективно их подбирать под задачу: PythonSQL, PostgreSQL, Сlickhouse, MongoDB, HDFSHadoop, Spark, Apache Kafka, Redis, Airflow, NiFi, dbt, Metabase.

⚡️Смотреть программу подробнее и оставить заявку по ссылке – на сайте⚡️

Big Data AI

13 Oct, 10:01


🖥 Все LLM сходятся к одной точке 🤔

🌟 Центральной предлагаемой гипотезой является «гипотеза Platonic Representation»: нейронные сети, обученные с разными целями на разных данных и модальностях, сходятся к общей статистической модели реальности в своих пространствах представления. В частности, в статье утверждается, что по мере того, как модели ИИ масштабируются по размеру, данным и разнообразию задач, их внутренние представления становятся все более согласованными, даже в разных модальностях, таких как зрение и язык

🔗 Arxiv: *клик*

@bigdatai

Big Data AI

13 Oct, 08:19


⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:

МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/python_job_interview
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Linux: t.me/linuxacademiya
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/golang_interview
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc


💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy

Big Data AI

11 Oct, 16:03


🖼 VideoGuide — метод для улучшения временной согласованности видео в моделях диффузии, не требующий дополнительного обучения

🌟 VideoGuide использует предварительно обученные видео-диффузионные модели в качестве руководящих агентов на ранних стадиях интерференции, чтобы улучшить качество и согласованность видео. Это решение снижает вычислительную нагрузку и сохраняет высокое качество изображений, решая проблемы временных артефактов в генерации видео

🔗 Arxiv: *клик*

@bigdatai

Big Data AI

11 Oct, 07:03


✔️ "Электронный язык" с ИИ распознает вкусовые характеристики.

Ученые из Penn State разработали электронный язык, способный различать жидкости - молоко с разным содержанием воды, различные виды соды и кофе, а также определять свежесть соков и потенциальные проблемы с безопасностью пищевых продуктов.

Язык использует графеновый ионно-чувствительный транзистор, подключенный к нейронной сети. ИИ сначала оценивал жидкости по 20 заданным параметрам, достигнув точности более 80%. Однако, когда ИИ самостоятельно определял параметры оценки, точность возросла до 95%.

Исследователи использовали метод Shapley Additive Explanations, чтобы понять, как ИИ принимает решения, и обнаружили, что он учитывает более тонкие характеристики данных. По словам исследователей, возможности языка ограничены только данными, на которых он был обучен.
psu.edu

✔️ Google представляет Tx-LLM: Модель ИИ для ускорения разработки лекарств.

Google представила новую большую языковую модель Tx-LLM, разработанную для прогнозирования свойств биологических объектов на всех этапах разработки лекарств. Tx-LLM обучена на 66 наборах данных, охватывающих задачи от ранней идентификации целевых генов до утверждения клинических испытаний на поздних стадиях.

Модель Tx-LLM, построенная на базе PaLM-2, достигла конкурентоспособных результатов по сравнению с современными моделями, превзойдя их в 22 из 66 задач. Tx-LLM продемонстрировала способность эффективно объединять молекулярную информацию с текстовой и переносить знания между задачами с различными типами терапии.

Google планирует предоставить доступ к Tx-LLM внешним исследователям для ускорения процесса разработки лекарств.
research.google

✔️ Tesla готовится к презентации роботакси.

Tesla проводит мероприятие под названием «Мы, роботы», 10 октября в 19.00 EPT (2:00 11 октября GMT) на котором, как ожидается, будет представлен дизайн роботакси - автомобиля Tesla, предназначенного исключительно для перевозки пассажиров без водителя.
На мероприятии также может быть представлен гуманоидный робот Optimus.
npr.org

✔️ Liftoff запускает Cortex, модель машинного обучения для улучшения мобильной рекламы.

Liftoff, занимающаяся консалтингом мобильных приложений, запустила новую платформу машинного обучения под названием Cortex. Эта платформа использует специализированные модели нейронных сетей для повышения эффективности мобильных рекламных кампаний.

Cortex позволяет достичь более высокой рентабельности инвестиций в рекламу, определяя наилучшие каналы и аудитории для рекламных кампаний. По данным Liftoff, Cortex уже показал положительные результаты: снижение стоимости установки (CPI) на 23%, стоимости привлечения клиента (CPA) на 21% и увеличение рентабельности рекламных расходов (ROAS) на 16%.
venturebeat.com

✔️ Выпущен релиз Gradio 5.

Gradio выпустила стабильную версию Gradio 5, он получил ряд улучшений, направленных на решение проблем, с которыми сталкивались разработчики ранее.

Среди ключевых обновлений: улучшенная производительность за счет рендеринга на стороне сервера (SSR), обновленный дизайн основных компонентов и новые темы, поддержка потоковой передачи с низкой задержкой, включая WebRTC, экспериментальная AI-площадка для генерации и модификации приложений с помощью ИИ.

В ближайшее время планируется добавить поддержку многостраничных приложений, мобильных устройств и новые компоненты для работы с изображениями и видео.
huggingface.co

✔️ NVIDIA поставила долгожданные чипы Blackwell AI в OpenAI и Microsoft.

OpenAI объявила, что получила первые инженерные образцы DGX B200 от Nvidia. Они обещают трехкратное увеличение скорости обучения и 15-кратное увеличение производительности инференса по сравнению с предыдущими моделями.

Microsoft также сообщила, что ее платформа Azure первой использует систему Blackwell от Nvidia с AI-серверами на базе GB200.
analyticsindiamag.com

@ai_machinelearning_big_data

#news #ai #ml

Big Data AI

10 Oct, 09:07


Qwen2.5-72B теперь доступен для пользователей бесплатного уровня на HF Serverless Inference API (с щедрой квотой)!

Начать работу можно здесь: https://huggingface.co/playground?modelId=Qwen/Qwen2.5-72B-Instruct

@bigdatai

Big Data AI

08 Oct, 18:34


🖥 Whisper — созданная OpenAI универсальная модель распознавания речи, обученная на большом объеме данных. Она способна выполнять мультиязычное распознавание речи, перевод речи и идентификацию языка. Whisper поддерживает несколько размеров моделей, оптимизированных для различных сценариев (разных размеров, с разной точностью и производительностью)

🌟 Модель можно использовать через командную строку или в Python

🔐 Лицензия: MIT

▪️Github

@bigdatai

Big Data AI

08 Oct, 16:41


Нейросетевая модель Сбера GigaChat обрела новую модальность

Сервис научился обрабатывать изображения и получать из них необходимую информацию. Искусственный интеллект распознает печатный текст, таблицы и формулы. Пользователю нужно лишь загрузить свою картинку и объяснить задачу: сделать описание содержимого или придумать подпись.

Эта фича особенно актуальна для бизнеса, ведь появится ещё больше сценариев применения искусственного интеллекта. Например, компании смогут модерировать и классифицировать отзывы, автоматизировать линию поддержки и многое другое.

Есть и второй важный апдейт: объём запроса увеличился в четыре раза — с 8 до 32 тысяч токенов. Раньше действовало ограничение, равное 12 страницам А4. Теперь же лимит расширили до 48 страниц, что позволит поддерживать более длинные диалоги.

Обновлённый GigaChat уже доступен бесплатно в веб-версии и Telegram-боте.