BigData @bigdata_1 Channel on Telegram

BigData

@bigdata_1


Data Science : Big Data : Machine Learning : Deep Learning. По всем вопросам @evgenycarter

BigData (Russian)

Добро пожаловать в наш канал BigData! Здесь мы обсуждаем темы, связанные с Data Science, Big Data, Machine Learning и Deep Learning. Если вы интересуетесь анализом данных, исследованиями больших объемов информации или разработкой алгоритмов машинного обучения, то вы попали по адресу! На нашем канале вы найдете полезные статьи, новости, обзоры и многое другое, что поможет вам расширить свои знания в области Big Data. Наша цель - делиться информацией, вдохновлять и помогать другим учиться. Если у вас есть вопросы, не стесняйтесь обращаться к администратору канала @evgenycarter. Присоединяйтесь к нам и станьте частью нашего сообщества BigData уже сегодня!

BigData

23 Nov, 11:47


TEXTure: Semantic Texture Transfer using Text Tokens

Novel method for text-guided generation, editing, and transfer of textures for 3D shapes. Leveraging a pretrained depth-to-image diffusion mode

TEXTure принимает исходный рендер и текстовое описание и рисует модель с высококачественными текстурами, используя итеративный процесс на основе диффузии.

🖥 Github: https://github.com/TEXTurePaper/TEXTurePaper

✅️ Paper: https://arxiv.org/abs/2302.01721v1

⭐️ Project: https://texturepaper.github.io/TEXTurePaper/

👉 @bigdata_1

BigData

20 Nov, 05:49


Conditional Flow Matching

Conditional Flow Matching is a fast way to train Continuous Normalizing Flow models.

🖥 Github: https://github.com/atong01/conditional-flow-matching

✅️ Paper: https://arxiv.org/abs/2302.00482v1

⭐️ Dataset: https://paperswithcode.com/dataset/celeba

👉 @bigdata_1

BigData

18 Nov, 10:47


Audio-Visual Segmentation (AVS)

AVS to estimate pixel-wise segmentation masks for all the sounding objects, no matter the number of visible sounding objects

Большой датасет и модель сегментации объектов, издающих звук на видео.

🖥 Github: https://github.com/OpenNLPLab/AVSBench

✅️ Paper: https://arxiv.org/pdf/2301.13190.pdf

⭐️ Project: https://opennlplab.github.io/AVSBench/

✅️ Dataset: http://www.avlbench.opennlplab.cn/download

🔹 Benchmark: http://www.avlbench.opennlplab.cn/

👉 @bigdata_1

BigData

13 Nov, 13:50


Moûsai: Text-to-Music Generation with Long-Context Latent Diffusion

Audio generation using diffusion models, in PyTorch.

Полнофункциональная библиотека генерации звука на PyTorch.

pip install audio-diffusion-pytorch

🖥 Github: https://github.com/archinetai/audio-diffusion-pytorch

✅️ Paper: https://arxiv.org/abs/2301.11757v1

⭐️ A-unet: https://github.com/archinetai/a-unet

👉 @bigdata_1

BigData

06 Nov, 19:27


PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development

PRIMEQA supports core QA functionalities like retrieval and reading comprehension as well as auxiliary capabilities such as question generation.

PrimeQA — это репозиторий с открытым исходным кодом, который позволяет исследователям и разработчикам легко обучать мультиязычные модели ответов на вопросы (QA).

🖥 Github: https://github.com/primeqa/primeqa

🖥 Notebooks: https://github.com/primeqa/primeqa/tree/main/notebooks

✅️ Paper: https://arxiv.org/abs/2301.09715v2

⭐️ Dataset: https://paperswithcode.com/dataset/wikitablequestions

✔️ Docs: https://primeqa.github.io/primeqa/installation.html

👉 @bigdata_1

BigData

06 Nov, 07:30


Тренажёр-практикум Python и SQL
(от NumPy и OpenCV до PostgreSQL) в аналитике данных и ML


Откройте карьерные возможности в машинном обучении и аналитике данных
- Научитесь проводить анализ больших объёмов данных.
- Создавайте интерактивные и 3D-визуализации для представления данных.
- Освойте работу с SQL-базами для хранения, модификации и извлечения данных.
- Оптимизируйте запросы и управляйте структурой данных в базах.

🫡 Для кого будет полезен этот тренажёр?

Аналитикам данных, бизнес-аналитикам и продуктовым специалистам:
Новичкам и продолжающим в области анализа и визуализации данных, которые хотят освоить ключевые инструменты для эффективного анализа и машинного обучения на практике.

Тем, кто уже знаком с Python и стремится развиваться в аналитике данных и ML:
Разработчикам и специалистам по данным, стремящимся углубить навыки обработки данных и визуализации.

Инженерам данных и всем заинтересованным:
Тем, кто сталкивается с трудностями при предобработке данных для моделей машинного обучения и хочет выстроить системный подход к работе с ними.

Тем, кто стремится автоматизировать процессы и управлять данными:
После курса вы научитесь эффективно работать с NumPy и Pandas, создавать визуализации через Matplotlib и Seaborn, а также управлять базами данных с PostgreSQL.

Примеры задач, которые вы решите в тренажёре:
- Анализ температурных данных
- Редактор изображений
- Временной анализ продаж

🎓 Попробуйте первые уроки бесплатно!
В демо-версии курса вы познакомитесь с основами библиотек NumPy, Pandas и Matplotlib, научитесь создавать и редактировать массивы, работать с изображениями и применять эти навыки для решения практических задач в разных областях.
Пройдите 6 практических заданий сразу!
PS. В демо также доступен ИИ-бот ДуДу с code review 24/7.

👉 Регистрация на демо-доступ

Реклама. Информация о рекламодателе

BigData

05 Nov, 07:54


Using LoRA for Efficient Stable Diffusion Fine-Tuning

LoRA: Low-Rank Adaptation of Large Language Models is a novel technique introduced by Microsoft researchers to deal with the problem of fine-tuning large-language models.

Новый метод, представленный исследователями Microsoft для тонкой настройки больших языковых моделей.

LoRA значительно сокращает количество параметров для обучения модели и сокращает использование памяти GPU, поскольку для большинства весов моделей не требуется вычислять градиенты.

По сравнению с GPT-3 175B, настроенным с помощью Adam, c LoRA можно уменьшить количество обучаемых параметров в 10 000 раз и затраты GPU в 3 раза.

🤗 Hugging face blog: https://huggingface.co/blog/lora

✅️ Paper: https://arxiv.org/abs/2106.09685

⭐️ Code: https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py

👉 @bigdata_1

BigData

26 Oct, 11:14


StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

StyleGAN-T, addresses the specific requirements of large-scale text-to-image synthesis, such as large capacity, stable training on diverse datasets, strong text alignment, and controllable fidelity vs. text alignment tradeoff.

StyleGAN-T новый ган для синтеза текста и изображений.

StyleGAN-T значительно превосходит предыдущие GANы и модели дистиллированной диффузии в скорости и качестве генерации текста в изображение.

🖥 Github: github.com/autonomousvision/stylegan-t

✅️ Paper: arxiv.org/pdf/2301.09515.pdf

⭐️ Project: sites.google.com/view/stylegan-t

✔️ Video: https://www.youtube.com/watch?v=MMj8OTOUIok&embeds_euri=https%3A%2F%2Fsites.google.com%2F&feature=emb_logo

🖥 Projected GAN: https://github.com/autonomousvision/projected-gan

👉 @bigdata_1

BigData

24 Oct, 13:02


⁉️Хотите повысить свою квалификацию и стать дата-инженером?

Инвестируйте в успех своей карьеры прямо сейчас начав обучение на курсе «Data Engineer» от OTUS.

После обучения вы сможете:

✔️ Разворачивать, налаживать и оптимизировать инструменты обработки данных
✔️ Адаптировать датасеты для дальнейшей работы и аналитики
✔️ Создадите сервисы, которые используют результаты обработки больших объемов данных
✔️ Принимать участие в разработке архитектуры данных в компании

➡️ Пройдите короткий тест прямо сейчас, чтобы получить специальную цену на обучение: https://vk.cc/cDb89n

🎁 А еще приятный бонус: до конца октября действует скидка 10% на обучение.

Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576

BigData

24 Oct, 11:20


OnePose++: One-Shot Pose

Keypoint-free one-shot object pose estimation method that handles low-textured objects without knowing CAD models.

Новый метод захвата объектов без ключевых точек, который значительно превосходит существующие методы и может работать с низкотекстурированными объектами.


🖥 Github: https://github.com/zju3dv/OnePose_Plus_Plus

✅️ Paper: https://openreview.net/pdf?id=BZ92dxDS3tO

⭐️ Project: https://zju3dv.github.io/onepose_plus_plus

Dataset: https://zjueducn-my.sharepoint.com/:f:/g/personal/12121064_zju_edu_cn/ElfJC7FiK75Hhh1CF0sPVSQBdzJpeWpOfj8TZzRuxo9PUg?e=Pbnbi8

👉 @bigdata_1

BigData

16 Oct, 04:32


Deep Learning Tuning Playbook

This document is for engineers and researchers (both individuals and teams) interested in maximizing the performance of deep learning models.

Этот репозиторий-книга от специалистов Google Research с практическими советами по максимальному повышению производительности моделей глубокого обучения.

Github https://github.com/google-research/tuning_playbook#who-is-this-document-for

Reddit https://www.reddit.com/r/MachineLearning/comments/10gxtao/d_deep_learning_tuning_playbook_recently_released/


👉 @bigdata_1

BigData

14 Oct, 05:49


CS224W: Machine Learning with Graphs Free Course from Stanford

https://www.youtube.com/playlist?list=PLoROMvodv4rPLKxIpqhjhPgdQy7imNkDn

👉 @bigdata_1

BigData

12 Oct, 17:04


Msanii: High Fidelity Music Synthesis on a Shoestring Budget

Model combines the expressiveness of mel spectrograms, the generative capabilities of diffusion models, and the vocoding capabilities of neural vocoders.

Новая модель на основе диффузии для эффективного синтеза длинной музыки высокого качества.

pip install -q git+https://github.com/Kinyugo/msanii.git

🖥 Github: https://github.com/kinyugo/msanii

⭐️ Demo: https://kinyugo.github.io/msanii-demo/

⭐️ Colab: https://colab.research.google.com/github/Kinyugo/msanii/blob/main/notebooks/msanii_demo.ipynb

✅️ Paper: https://arxiv.org/abs/2301.06468

🤗Hugging face: https://huggingface.co/spaces/kinyugo/msanii

👉 @bigdata_1

BigData

11 Oct, 14:00


#вакансия #удалённо #parttime #преподаватель #Kafka #spark #ML #MLOps

Время делиться знаниями!

OTUS – образовательная платформа. У нас авторские курсы разной степени сложности, вступительное тестирование для студентов и преподаватели-практики из крупнейших компаний. 7 лет мы учимся друг у друга, советуемся, помогаем, делимся опытом и обсуждаем новости как в преподавании, так и в IT.

Вакансия преподаватель на онлайн-курсы:
- Machine Learning Advanced
- Apache Kafka
- Data Engineer
- Spark developer
- MLOps


Требуется практический опыт по темам курса. Можно без опыта преподавания, мы поможем вам освоить практики преподавания.

Преподаватель раскрывает тему с помощью теории и примеров из практики. Занятия проводятся c 20:00 до 21:30. Можно выбирать комфортную нагрузку и темы из программы курса. Материалы к занятиям есть.

С нами вы сможете
- структурировать свой опыт и знания;
- прокачать софт-скиллы;
- получать от 4000 до 6000 руб. за один вебинар (полтора часа) + от 300 до 400 руб. за одно проверенное домашнее задание.

Бонусы 🎁
- наши курсы со скидкой/бесплатно;
- можно приглашать лучших выпускников к себе на работу;
- воркшопы и конференции для наших преподавателей.

Обсудить подробнее: @HR_Nikita

BigData

11 Oct, 10:37


Основы Data Science: от Numpy до PostgreSQL
Хочешь освоить ключевые инструменты анализа данных? Этот тренажер — твоё лучшее начало для погружения в Data Science!

Что ты изучишь:
- Основы Python и работу с мощными библиотеками Numpy и Pandas.
- Математические основы для Data Science, включая регрессию, классификацию и кластеризацию.
- Работа с базами данных с использованием SQL и PostgreSQL.
- Практические задания и проекты для портфолио, которые подготовят тебя к реальным задачам.

Кому подойдет курс - тренажер?
1.Новичкам в аналитике данных и тем, кто хочет развиваться в сторону ML-инженера.
2.Администраторам баз данных, которые стремятся автоматизировать задачи и повысить эффективность управления данными.
3.Инженерам данных, которым нужно улучшить навыки предобработки данных для машинного обучения.

Как изменится твоя работа
📊Аналитики данных:
До курса: Затруднения с обработкой больших объемов данных, выполнение задач вручную.
После курса: Эффективная работа с Numpy и Pandas, умение визуализировать данные с помощью MatPlotLib, выполнение SQL-запросов для работы с базами данных.
💻Администраторы баз данных:
До курса: Отсутствие автоматизации и инструментов для анализа данных.
После курса: Автоматизация рутинных задач, уверенная работа с SQL и PostgreSQL, создание визуальных отчетов.
🛠Инженеры данных:
До курса: Сложности с предобработкой данных для ML-моделей.
После курса: Быстрая и эффективная обработка данных с Numpy и Pandas, умение визуализировать результаты и работать с PostgreSQL.

🎓 Первый урок доступен бесплатно в демо - доступе

В демо-версии курса ты познакомишься с библиотекой Numpy: научишься создавать и редактировать массивы, работать с изображениями и применять этот навык для решения задач в любой области работы с данными и решишь более 6 практических задач!

Регистрация на демо-доступ

Реклама. Информация о рекламодателе

BigData

11 Oct, 05:13


Image Similarity with Hugging Face Datasets and Transformers

In this post, you'll learn to build an image similarity system wich Transformers.

Полезная статья, с которой вы создадите систему поиска сходства изображений с помощью Transformers. Можно немного попрактиковаться и попробовать другие модели.

Huggingface https://huggingface.co/blog/image-similarity
Github https://github.com/huggingface/blog/blob/main/image-similarity.md
Colab https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb

👉 @bigdata_1

BigData

10 Oct, 22:11


Neural Deferred Shading

Новая быстрая многоракурсная 3D-реконструкция с произвольными объектами и настраиваемым освещением.

🖥 Github: github.com/fraunhoferhhi/neural-deferred-shading

⭐️ Project: fraunhoferhhi.github.io/neural-deferred-shading

✅️ Paprer: https://mworchel.github.io/assets/papers/neural_deferred_shading_with_supp.pdf

Pyremesh : https://github.com/sgsellan/botsch-kobbelt-remesher-libigl

❤️Video: https://www.youtube.com/watch?v=nIqmuylmpFY

👉 @bigdata_1

BigData

10 Oct, 09:57


⁉️ Открытый урок «Методы сегментации в рекомендациях»

🗓 17 октября в 20:00 МСК
🆓 Бесплатно. Урок в рамках старта курса «Рекомендательные системы» от Otus.

На вебинаре разберем:

✔️ как использовать RFM-анализ, методы кластеризации и look-a-like моделирование;
✔️ как применять аналитические и машинные методы для сегментации клиентов;
✔️ примеры практического применения этих методов в реальных задачах.

🔗 Ссылка для регистрации на урок: https://vk.cc/cChFnb

Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576

BigData

06 Oct, 10:06


Audio-Visual Efficient Conformer for Robust Speech Recognition

Улучшенный метод чтения по губам, с помощью архитектуры Conformer Connectionist Temporal Classification (CTC) для обработки аудио и видео.


🖥 Github
https://github.com/burchim/avec
✔️ Paper https://arxiv.org/abs/2301.01456
🔥Notebook https://colab.research.google.com/github/burchim/AVEC/blob/master/demo.ipynb
🚀 Models https://github.com/burchim/avec#Models

👉 @bigdata_1

BigData

04 Oct, 12:28


🤖 Готовы ли вы стать специалистом по персонализации и рекомендациям?

Мы разработали профессиональный онлайн-курс «Рекомендательные системы», для специалистов в области ML и DS, которые хотят расширить свои компетенции в области рекомендательных систем.

Приходите на открытый урок курса 17 октября в 20:00 мск.

Тема: «Методы сегментации в рекомендациях».

На уроке разберем:

➡️ как использовать RFM-анализ, методы кластеризации и look-a-like моделирование;
➡️ как применять аналитические и машинные методы для сегментации клиентов;
➡️ примеры практического применения этих методов в реальных задачах.

🔗 Ссылка для регистрации на урок: https://vk.cc/cBV7Zi

Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576

2,904

subscribers

732

photos

75

videos