Carne vermelha como o único alimento que aumentou o comprimento dos telomeros (marcador de longevidade), possivelmente pela ação da carnosina, dipeptídeo exclusivo em fontes animais, riquíssimo apenas em carne vermelha:
Kasielski, M., Eusebio, M.-O., Pietruczuk, M., & Nowak, D. (2016). The relationship between peripheral blood mononuclear cells telomere length and diet: Unexpected effect of red meat. Nutrition Journal, 15, Article 68. https://doi.org/10.1186/s12937-016-0189-2
Ácido gordo C15 (exclusivo em fontes animais) como importante indutor de longevidade, melhoria de saúde metabólica, anti cancro:
Venn-Watson, S., & Schork, N. J. (2023). Pentadecanoic acid (C15:0), an essential fatty acid, shares clinically relevant cell-based activities with leading longevity-enhancing compounds. Nutrients, 15(21), 4607. https://doi.org/10.3390/nu15214607
As 5 revisões sistemáticas históricas da Annals of Internal Medicine que demonstram que todos os estudo observacionais contra a carne vermelha (são os estudos negativos contra a carne que embasaram a OMS) tem evidência científica low grade ou very lowgrade:
Han, M. A., Zeraatkar, D., Guyatt, G. H., Vernooij, R. W. M., El Dib, R., Zhang, Y., ... & Johnston, B. C. (2019). Reduction of red and processed meat intake and cancer mortality and incidence: A systematic review and meta-analysis of cohort studies. Annals of Internal Medicine, 171(10), 711–720. https://doi.org/10.7326/M19-0699
Johnston, B. C., Zeraatkar, D., Han, M. A., Vernooij, R. W. M., Valli, C., El Dib, R., ... & Guyatt, G. H. (2019). Unprocessed red meat and processed meat consumption: Dietary guideline recommendations from the NutriRECS Consortium. Annals of Internal Medicine, 171(10), 756–767. https://doi.org/10.7326/M19-1621
Vernooij, R. W. M., Zeraatkar, D., Han, M. A., El Dib, R., Zworth, M., Milio, K., ... & Johnston, B. C. (2019). Patterns of red and processed meat consumption and risk for cardiometabolic and cancer outcomes: A systematic review and meta-analysis of cohort studies. Annals of Internal Medicine, 171(10), 732–741. https://doi.org/10.7326/M19-1583
Zeraatkar, D., Han, M. A., Guyatt, G. H., Vernooij, R. W. M., El Dib, R., Cheung, K., ... & Johnston, B. C. (2019). Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes: A systematic review and meta-analysis of cohort studies. Annals of Internal Medicine, 171(10), 703–710. https://doi.org/10.7326/M19-1583
Health-Related Values and Preferences Regarding Meat Consumption: A Mixed-Methods Systematic Review. (2019). Annals of Internal Medicine, 171(10), 721–732. https://doi.org/10.7326/M19-0655
Beta-hidroxibutirato chegando em colonócitos e enterócitos via corrente sanguínea:
Ashy, A. A., & Ardawi, M. S. M. (1988). Glucose, glutamine, and ketone-body metabolism in human enterocytes. Metabolism, 37(6), 602–609. https://doi.org/10.1016/0026-0495(88)90179-5
Sobre ingesta proteica (aproveitamento e reserva por 12h de proteína, dose de 100g de proteína pura):
Trommelen, J., van Lieshout, G. A. A., Nyakayiru, J., Holwerda, A. M., Smeets, J. S. J., Hendriks, F. K., van Kranenburg, J. M. X., Zorenc, A. H., Senden, J. M., Goessens, J. P. B., Gijsen, A. P., & van Loon, L. J. C. (2023). The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration in vivo in humans. Cell Reports Medicine. https://doi.org/10.1016/j.crm.2023.100672
Sobre nosso ADN hipercarnívoro:
Ben-Dor, M., Sirtoli, R., & Barkai, R. (2021). The evolution of the human trophic level during the Pleistocene. American Journal of Physical Anthropology, 175(3), 469–486. https://doi.org/10.1002/ajpa.24247
Beta_hidroxibutirato suprimindo cancro colorretal:
Dmitrieva-Posocco, O., Wong, A. C., Lundgren, P., & [colaboradores]. (2022). β-Hydroxybutyrate suppresses colorectal cancer. Nature, 605(7909), 160–165. https://doi.org/10.1038/s41586-022-04649-6
[1] Sasaki, T., Ota, Y., Takikawa, Y., Terrooatea, T., & [colaboradores]. (2024). Food antigens suppress small intestinal tumorigenesis.