Data Science by ODS.ai 🦜 @opendatascience Channel on Telegram

Data Science by ODS.ai 🦜

@opendatascience


First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @haarrp

Data Science by ODS.ai 🦜 (English)

Are you interested in Data Science? Looking for a reliable source of information on AI, Big Data, Machine Learning, Statistics, and general Math? Look no further than the Data Science channel by ODS.ai 🦜 on Telegram! This channel is the first of its kind, dedicated to providing subscribers with all the latest technical and popular news and updates in the world of Data Science. Whether you are a seasoned professional or just starting out in the field, this channel has something for everyone. From tutorials and guides to real-world applications and case studies, you will find a wealth of knowledge at your fingertips. The editors of this channel are experts in the field and are always available to answer your questions and provide guidance. To connect with them, simply reach out to @haarrp on Telegram. Don't miss out on the opportunity to stay informed and up-to-date on all things Data Science - join the Data Science channel by ODS.ai 🦜 today!

Data Science by ODS.ai 🦜

21 Nov, 17:01


⚡️ Biggest open text dataset release of the year: SmolTalk is a 1M sample big synthetic dataset that was used to train SmolLM v2.

TL;DR;
🧩 New datasets: Smol-Magpie-Ultra (400K) for instruction tuning; Smol-contraints (36K) for precise output; Smol-rewrite (50K) & Smol-summarize (100K) for rewriting and summarization.
🤝 Public Dataset Integrations: OpenHermes2.5 (100K), MetaMathQA & NuminaMath-CoT, Self-Oss-Starcoder2-Instruct, LongAlign & SystemChats2.0
🥇 Outperforms the new Orca-AgenInstruct 1M when trained with 1.7B and 7B models
🏆 Outperform models trained on OpenHermes and Magpie Pro on IFEval and MT-Bench
distilabel to generate all new synthetic datasets
🤗 Released under Apache 2.0 on huggingface

Apache 2.0

Synthetic generation pipelines and training code released.

Dataset: https://huggingface.co/datasets/HuggingFaceTB/smoltalk
Generation Code: https://github.com/huggingface/smollm
Training Code: https://github.com/huggingface/alignment-handbook/tree/main/recipes/smollm2

@opendatascience

Data Science by ODS.ai 🦜

21 Nov, 14:56


⚡️ SANA: Генерация изображений изображений высокого разрешения от Nvidia Labs.

Sana - семейство моделей для генерации изображений с разрешением до 4096x4096 пикселей. Главное преимущество Sana - высокая скорость инференса и низкие требования к ресурсам, модели можно запустить даже на ноутбуке.

Секрет эффективности Sana в ее архитектуре, которая состоит из нескольких инновационных компонентов:

🟢Deep Compression Autoencoder (DC-AE)
Сжимает изображение в 32 раза, в результате чего значительно сокращается число латентных токенов, что, в свою очередь, повышает эффективность обучения и позволяет генерировать изображения с разрешением 4K.

🟢Linear Diffusion Transformer (Linear DiT)
Использует линейное внимание вместо традиционного, ускоряя генерацию с разрешением 4K в 1.7 раза.

В Linear DiT вместо модуля MLP-FFN используется Mix-FFN, который объединяет в себе свертку 3x3 и Gated Linear Unit (GLU). Mix-FFN позволяет отказаться от позиционного кодирования без потери качества.

🟢Decoder-only Small LLM as Text Encoder
Энкодер, основанный на LLM Gemma, который лучше понимает текстовые запросы пользователя и точнее передает их смысл на генерации.

Для точного соответствия "текст - изображение" при обучении энкодера применялись "сложные человеческие инструкции" (CHI), которые научили Gemma учитывать контекст запроса.

Sana создавалась с помощью уникальной стратегии обучения и выборки. В процессе обучения используются несколько VLM (VILA, InternVL2) для создания различных аннотаций к каждому изображению. Затем, на основе CLIP-оценки, были отобраны наиболее подходящие пары "текст-изображение".

Обучение происходило постепенно, начиная с разрешения 512x512 и заканчивая 4096x4096, а алгоритм Flow-DPM-Solver ускорил процесс выборки, сократив количество шагов по сравнению с Flow-Euler-Solver.

Результаты тестирования Sana впечатляют:

🟠Sana-0.6B, работающая с изображениями 512x512, в 5 раз быстрее, чем PixArt-Σ, при этом показывает лучшие результаты по метрикам FID, Clip Score, GenEval и DPG-Bench.

🟠При разрешении 1024x1024 Sana-0.6B в 40 раз быстрее PixArt-Σ.

🟠Sana-0.6B превосходит по скорости Flux-12B в 39 раз при разрешении 1024x1024) и может быть запущена на ноутбуке с 16 GB VRAM, генерируя изображения 1024x1024 менее чем за секунду.


⚠️ Для локального инференса модели 0.6B требуется 9GB VRAM, а для модели 1.6B - 12GB VRAM.


▶️ Установка и инференс c GradioUI:

# official online demo
DEMO_PORT=15432 \
python app/app_sana.py \
--config=configs/sana_config/1024ms/Sana_1600M_img1024.yaml \
--model_path=hf://Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth





🟡Страница проекта
🟡Коллекция моделей на HF
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusion #SANA #NVIDIA

Data Science by ODS.ai 🦜

20 Nov, 18:27


⚡️ DeepSeek-R1-Lite-Preview is now live: unleashing supercharged reasoning power!

🔍 o1-preview-level performance on AIME & MATH benchmarks.
💡 Transparent thought process in real-time.
🛠️ Open-source models & API coming soon!

🌐 You can try it now: http://chat.deepseek.com

#DeepSeek #llm

@opendatascience

Data Science by ODS.ai 🦜

14 Nov, 20:30


Nexusflow released Athene v2 72B - competetive with GPT4o & Llama 3.1 405B Chat, Code and Math 🔥

> Arena Hard: GPT4o (84.9) vs Athene v2 (77.9) vs L3.1 405B (69.3)

> Bigcode-Bench Hard: GPT4o (30.8) vs Athene v2 (31.4) vs L3.1 405B (26.4)

> MATH: GPT4o (76.6) vs Athene v2 (83) vs L3.1 405B (73.8)

> Models on the Hub along and work out of the box w/ Transformers 🤗

https://huggingface.co/Nexusflow/Athene-V2-Chat

They also release an Agent model: https://huggingface.co/Nexusflow/Athene-V2-Agent

@opendatascience

Data Science by ODS.ai 🦜

06 Nov, 12:30


🔥 Speech to Speech model - Fish Agent v0.1 3B by FishAudio

> Trained on 700K hours of multilingual audio
> Continue-pretrained version of Qwen-2.5-3B-Instruct for 200B audio & text tokens
> Zero-shot voice cloning
> Text + audio input/ Audio output
> Ultra-fast inference w/ 200ms TTFA

> Models on the Hub & Finetuning code on its way! 🚀

https://huggingface.co/fishaudio/fish-agent-v0.1-3b

@opendatascience

Data Science by ODS.ai 🦜

06 Nov, 11:00


⚡️ Как использование нескольких пользовательских представлений (MUR) улучшает персонализацию в рекомендательных системах

В Google рассказали про схему итеративного взвешивания плотности (iterative density weighting scheme, IDW), которая помогает равномерно распределять интересы пользователя.

Она уменьшает влияние дисбалансированных данных и улучшает кластеризацию элементов, анализируя плотность предметов в пространстве представлений.

В подробном разборе статьи от ml-спецов Яндекса рассказали про устройство IDW и кратко привели результаты эксперимента.


🟡Разбор
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #tech

Data Science by ODS.ai 🦜

05 Nov, 10:23


Smol TTS models are here! OuteTTS-0.1-350M - Zero shot voice cloning, built on LLaMa architecture, CC-BY license! 🔥

> Pure language modeling approach to TTS
> Zero-shot voice cloning
> LLaMa architecture w/ Audio tokens (WavTokenizer)
> BONUS: Works on-device w/ llama.cpp

Three-step approach to TTS:

> Audio tokenization using WavTokenizer (75 tok per second).
> CTC forced alignment for word-to-audio token mapping.
> Structured prompt creation w/ transcription, duration, audio tokens.

https://huggingface.co/OuteAI/OuteTTS-0.1-350M

@opendatascience

Data Science by ODS.ai 🦜

03 Nov, 16:54


Actions Speak Louder than Words: Trillion-Parameter Sequential Transducers for Generative Recommendations

У нейросетевых рекомендательных систем есть одна большая проблема — они плохо масштабируются, в то время как в NLP и CV скейлинг по размеру нейросетевых энкодеров очень хороший. Выделяют несколько причин этого явления: гигантский нестационарный словарь айтемов, гетерогенная природа признаков, а также очень большой объем данных.

В сегодняшней статье авторы предлагают переформулировать задачу рекомендации в генеративной постановке. Для начала, они представляют данные в виде последовательности событий. Вещественные фичи (счетчики и проч.) выкидываются, из взаимодействий с айтемами формируется единая последовательность, и затем в нее добавляются события изменения статической информации, такие как смена локации или изменение любого другого контекста.

Архитектура для генерации кандидатов выглядит довольно стандартно и похожа на SASRec или Pinnerformer: представляем пользователя в виде последовательности событий (item, action), и в тех местах, где следующим событием идет положительное взаимодействие с айтемом, предсказываем, что это за айтем.

А вот для ранжирования новизна достаточно серьезная: чтобы сделать модель target-aware (см. Deep Interest Network от Alibaba), понадобилось сделать более хитрую последовательность, в которой чередуются токены айтемов и действий: item_1, action_1, item_2, action_2, …. Из айтем-токенов предсказывается, какое с ними произойдет действие. Еще говорят, что на практике можно решать в этом месте любую многоголовую мультизадачу. Важно отметить, что авторы не учат единую модель сразу на генерацию кандидатов и ранжирование, а обучают две отдельные модели.

Другое нововведение — отказ от софтмакса и FFN в трансформере. Утверждается, что софтмакс плох для выучивания «интенсивности» чего-либо в истории пользователя. Те вещественные признаки, которые были выкинуты авторами, в основном её и касались. Например, сколько раз пользователь лайкал автора видеоролика, сколько раз скипал и т. д. Такие признаки очень важны для качества ранжирования. То, что отказ от софтмакса эту проблему решает, видно по результатам экспериментов — действительно есть значительное улучшение результатов ранжирования при такой модификации.

В итоге HSTU (Hierarchical Sequential Transduction Unit, так авторы окрестили свою архитектуру) показывает отличные результаты как на публичных, так и на внутренних датасетах. Еще и работает гораздо быстрее, чем прошлый DLRM подход за счет авторегрессивности и нового энкодера. Результаты в онлайне тоже очень хорошие — на billion-scale платформе short-form video (предполагаем, что это рилсы) получили +12.4% относительного прироста целевой метрики в A/B-тесте. Тем не менее, итоговая архитектура, которую авторы измеряют и внедряют, с точки зрения количества параметров не очень большая, где-то сотни миллионов. А вот по размеру датасета и длине истории скейлинг получился очень хороший.

@RecSysChannel
Разбор подготовил Кирилл Хрыльченко

Data Science by ODS.ai 🦜

01 Nov, 14:06


Ms - SmolLM2 1.7B - beats Qwen 2.5 1.5B & Llama 3.21B, Apache 2.0 licensed, trained on 11 Trillion tokens 🔥

> 135M, 360M, 1.7B parameter model
> Trained on FineWeb-Edu, DCLM, The Stack, along w/ new mathematics and coding datasets
> Specialises in Text rewriting, Summarization & Function Calling
> Integrated with transformers & model on the hub!

You can run the 1.7B in less than 2GB VRAM on a Q4 👑

Fine-tune, run inference, test, train, repeat - intelligence is just 5 lines of code away!

https://huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9

@opendatascience

Data Science by ODS.ai 🦜

01 Nov, 12:06


🔥 Ежегодной премией Yandex ML Prize наградили 14 лауреатов за достижения в области машинного обучения

Победителями стали ученые и преподаватели, чьи исследования способствуют развитию науки в области ИИ и открывают новые возможности для практического применения ML-технологий в различных сферах. Премия, основанная для поддержки молодых исследователей, проводится уже шестой год.

Лауреаты в номинации «Исследования»:
🥇Александр Колесов, занимается разработкой нейросетевых методов на основе оптимального транспорта между вероятностными распределениями, одной из главных задач является построение барицентра Вассерштейна.
🏆 Алексей Скрынник, занимается исследованием и разработкой передовых алгоритмов Follower и MATS-LP, комбинирующих обучение с подкреплением и подходы поиска пути для задач децентрализованного многоагентного планирования.
🧠 Александр Тюрин, занимается задачами оптимизации, включающими сжатия информации и асинхронные вычисления.

https://tass.ru/obschestvo/22283467

@opendatascience

Data Science by ODS.ai 🦜

24 Oct, 14:01


💡 SAM2Long, a training-free enhancement to SAM 2 for long-term video segmentation

- Less error accumulation facing occlusion/reappearance.
- A training-free memory tree for dynamic segmentation paths, boosting resilience efficiently.
- Significant improvements over SAM2 across 24 head-to-head comparisons on SA-V and LVOS.

🟡Technical Report: https://huggingface.co/papers/2410.16268
🟡Github: https://github.com/Mark12Ding/SAM2Long
🟡Homepage: https://mark12ding.github.io/project/SAM2Long/

#AIML #VideoSegmentation #SAM2Long #ComputerVision

@opendatascience

Data Science by ODS.ai 🦜

24 Oct, 12:30


⚡️Яндекс открыл доступ к более мощному семейству моделей YandexGPT 4

Pro-версия и облегчённая Lite-версия поддерживают более сложные запросы, расширенный контекст, скрытые рассуждения и работу с внешними инструментами. Модели уже доступны через API в Yandex Cloud.

🤖 Pro-версия превосходит предыдущее поколение в 70% случаев, а Lite не уступает лучшей модели прошлого поколения.
🤖 В четыре раза увеличено количество токенов (до 32 тысяч), которое нейросеть может обрабатывать в промте.
🤖 Улучшенная работа с RAG-сценариями и снижение доли галлюцинаций.
🤖 Внедрены скрытые рассуждения (Chain-of-thoughts) для пошагового анализа проблем, выделения этапов и поиска решений.

https://habr.com/ru/companies/yandex/articles/852968/

@opendatascience

Data Science by ODS.ai 🦜

24 Oct, 11:06


Minimalist Vision with Freeform Pixels

На ECCV-24 была секция, посвящённая низкоуровневому устройству систем компьютерного зрения. По настоящему low-level решение предложили в статье Minimalist Vision with Freeform Pixels, которая получила награду Best Paper Award. Авторы создали прототип полностью автономной по электропитанию камеры.

Вместо обычных матриц в камере используются 24 фотодиода. Перед каждым из них установлена маска-фильтр, которая выступает первым слоем нейросети. Оптическая передаточная функция маски зависит от задачи, под которую обучена камера.

По сути первый слой обеспечивает произвольную форму для каждого пикселя — против фиксированной квадратной у традиционных камер. А последующие слои выводят результат задачи. Так авторы демонстрируют возможность мониторинга рабочего пространства и оценки дорожного трафика при помощи всего лишь 8 пикселей из 24.

Кроме того, камера хорошо показала себя в задаче оценки освещённости помещения. Используя те же 8 пикселей, она сумела определить, какие из источников света были включены в каждый конкретный момент. При этом ни один из источников не был виден камере напрямую — она собирала информацию исходя из состояния помещения.

Помимо низкого энергопотребления, такой подход позволяет обеспечивать конфиденциальность людей в кадре, так как записываемой оптической информации недостаточно для восстановления деталей изображения. Прототип камеры оснащён микроконтроллером с Bluetooth. А с четырёх сторон расположены солнечные панели для получения электроэнергии.

Разбор подготовила Алиса Родионова
CV Time