AbstractDL Telegram Gönderileri

Коротко про классные штуки в CV, NLP и AI 🤷♂️
By Anton Razzhigaev
By Anton Razzhigaev
11,071 Abone
215 Fotoğraf
16 Video
Son Güncelleme 11.03.2025 07:48
Benzer Kanallar

7,530 Abone

7,428 Abone

5,127 Abone
AbstractDL tarafından Telegram'da paylaşılan en son içerikler
Выложили препринт статьи про SAE для детекции AI-текстов. Хоть я и внёс совсем небольшой вклад на финальном этапе, но был рад присоединиться к такому классному исследованию!
Ну что сказать по поводу GPT 4.5... Для своей цены это отвратительная модель. Стой она как Соннет, в ней бы был смысл. А так есть ноль ситуаций, где стоило бы пользоваться 4.5, а не Соннетом.
Вышла GPT-4.5. Вот техрепорт. Вот выжимка трансляции от Сиолошной. А ещё картинка про "это самая манипулятивная LLM от openAI".
LLM-Microscope: трансформеры хранят контекст в запятых и артиклях
Как писал выше — мою новую статью приняли на NAACL 🎉
Мы обнаружили, что самыми контекстуализированными токенами в языковых моделях являются... артикли и знаки препинания! Именно в них хранится больше всего информации о контексте.
Мы научились измерять, сколько контекстной информации "помнит" каждый токен, и оказалось, что существительные и глаголы сильно проигрывают по этому показателю всяким "the", запятым и точкам. Если удалить эти "незначительные" токены из текста (даже если с помощью GPT-4 удалить только не влияющие на смысл токены), то качество работы моделей резко падает, особенно на длинных текстах.
Ещё из интересного — токены, активации на которых хранят больше контекста, имеют более линейные преобразования между слоями (привет моей прошлой статье про линейность трансформеров).
Весь код для анализа внутренностей LLM (измерение контекстуальности токенов, нелинейности, logit lens и прочее) выложили в открытый доступ.
Статья, GitHub
Как писал выше — мою новую статью приняли на NAACL 🎉
Мы обнаружили, что самыми контекстуализированными токенами в языковых моделях являются... артикли и знаки препинания! Именно в них хранится больше всего информации о контексте.
Мы научились измерять, сколько контекстной информации "помнит" каждый токен, и оказалось, что существительные и глаголы сильно проигрывают по этому показателю всяким "the", запятым и точкам. Если удалить эти "незначительные" токены из текста (даже если с помощью GPT-4 удалить только не влияющие на смысл токены), то качество работы моделей резко падает, особенно на длинных текстах.
Ещё из интересного — токены, активации на которых хранят больше контекста, имеют более линейные преобразования между слоями (привет моей прошлой статье про линейность трансформеров).
Весь код для анализа внутренностей LLM (измерение контекстуальности токенов, нелинейности, logit lens и прочее) выложили в открытый доступ.
Статья, GitHub
Люди, которые часто используют ChatGPT — идеальные детекторы AI-текста
Оказалось, что эксперты, регулярно пользующиеся LLM в своей работе, способны распознавать AI-генерацию с почти 100% точностью, обходя все существующие детекторы и БЕЗ ложных срабатываний (в режиме majority voting).
Вот главные признаки сгенерированного текста по их мнению:
- избыточное использование некоторых слов: "crucial", "testament", "vibrant" и др.
- структура слишком "правильная" и предсказуемая
- заключения всегда аккуратные, оптимистичные и подытоживающие
Да, выборка людей была небольшая — всего 9 человек, но это всё равно продемонстрировало, что тексты от GPT-4o, o1-pro и Claude-3.5-sonnet реально детектировать, причём никакие fancy способы защиты (парафразы, доп инструкции) совсем не помогли.
Авторы выложили в открытый доступ код и датасет из 300 пар сгенерированных\реальных статей с очень подробной разметкой.
Статья, GitHub
Оказалось, что эксперты, регулярно пользующиеся LLM в своей работе, способны распознавать AI-генерацию с почти 100% точностью, обходя все существующие детекторы и БЕЗ ложных срабатываний (в режиме majority voting).
Вот главные признаки сгенерированного текста по их мнению:
- избыточное использование некоторых слов: "crucial", "testament", "vibrant" и др.
- структура слишком "правильная" и предсказуемая
- заключения всегда аккуратные, оптимистичные и подытоживающие
Да, выборка людей была небольшая — всего 9 человек, но это всё равно продемонстрировало, что тексты от GPT-4o, o1-pro и Claude-3.5-sonnet реально детектировать, причём никакие fancy способы защиты (парафразы, доп инструкции) совсем не помогли.
Авторы выложили в открытый доступ код и датасет из 300 пар сгенерированных\реальных статей с очень подробной разметкой.
Статья, GitHub
Better & Faster Large Language Models via Multi-token Prediction
Вероятно самая недооценная работа последнего года.
В чем идея: у нас самая замедляющая инференс часть это decoding. Есть спекулятивный когда мы можем предсказывать вероятности маленькой моделью и подключать большую только если маленькая не уверена. Работает это средне и очень не стабильно.
Авторы предлагают следущее: давайте сделаем многоголовый трансформер, который будет предсказывать N токенов за раз!
Авторы предлагают учить такие головы последовательно на одних и тех же данных(в целях экономии памяти) и заводят это как большой post training(200b токенов поверх llama2)
Cобственно благодаря тому что трансформер предсказывает сразу x3 токенов мы получаем скорость инференса x3 бесплатно, да еще и прирост на бенчмарках!
paper
offical model
Вероятно самая недооценная работа последнего года.
В чем идея: у нас самая замедляющая инференс часть это decoding. Есть спекулятивный когда мы можем предсказывать вероятности маленькой моделью и подключать большую только если маленькая не уверена. Работает это средне и очень не стабильно.
Авторы предлагают следущее: давайте сделаем многоголовый трансформер, который будет предсказывать N токенов за раз!
Авторы предлагают учить такие головы последовательно на одних и тех же данных(в целях экономии памяти) и заводят это как большой post training(200b токенов поверх llama2)
Cобственно благодаря тому что трансформер предсказывает сразу x3 токенов мы получаем скорость инференса x3 бесплатно, да еще и прирост на бенчмарках!
paper
offical model
DeepSeek-R1 для чайников
Ну и наделала же DeepSeek шуму. Мне пришлось целый хабропост написать 😁
TLDR: мало слов про сравнение с ChatGPT и метрики, много слов про технические детали обучения, датасеты, GRPO и якобы эмерджентный «Aha! moment».
Ну и наделала же DeepSeek шуму. Мне пришлось целый хабропост написать 😁
TLDR: мало слов про сравнение с ChatGPT и метрики, много слов про технические детали обучения, датасеты, GRPO и якобы эмерджентный «Aha! moment».
One-Prompt-One-Story: SVD и длинный промпт для генерации связанных изображений
Чтобы сгенерировать при помощи диффузии набор связанных консистентных изображений с единым персонажем, существует много методов, основанных на обучении (DreamBooth, IP-Adapter, Textual Inversion и т. п.). Но на самом деле можно обойтись и без обучения — например, StoryDiffusion делает это через расширение attention на референсную картинку.
В новой статье описывают ещё более простой метод генерации таких «историй» с единым героем — «One-Prompt-One-Story». Оказалось, что достаточно взять один длинный промпт с описанием каждого кадра и аккуратно, по очереди «выключать» нерелевантные части, сохраняя random seed. Для этого авторы используют SVD на текстовых эмбеддингах: усиливают нужные токены и ослабляют все лишние. Плюс небольшой трюк с cross-attention, чтобы персонаж не «расползался». Всё делается на лету, без дообучения и без референсных снимков.
Несмотря на простоту, метод по метрикам сильно обходит StoryDiffusion, и даже иногда обходит IP-adapter.
Статья, GitHub
Чтобы сгенерировать при помощи диффузии набор связанных консистентных изображений с единым персонажем, существует много методов, основанных на обучении (DreamBooth, IP-Adapter, Textual Inversion и т. п.). Но на самом деле можно обойтись и без обучения — например, StoryDiffusion делает это через расширение attention на референсную картинку.
В новой статье описывают ещё более простой метод генерации таких «историй» с единым героем — «One-Prompt-One-Story». Оказалось, что достаточно взять один длинный промпт с описанием каждого кадра и аккуратно, по очереди «выключать» нерелевантные части, сохраняя random seed. Для этого авторы используют SVD на текстовых эмбеддингах: усиливают нужные токены и ослабляют все лишние. Плюс небольшой трюк с cross-attention, чтобы персонаж не «расползался». Всё делается на лету, без дообучения и без референсных снимков.
Несмотря на простоту, метод по метрикам сильно обходит StoryDiffusion, и даже иногда обходит IP-adapter.
Статья, GitHub