Machine learning books and papers @machine_learn Channel on Telegram

Machine learning books and papers

@machine_learn


Admin: @Raminmousa
Watsapp: +989333900804
ID: @Machine_learn
link: https://t.me/Machine_learn

Machine learning books and papers (English)

Are you a fan of machine learning and looking to expand your knowledge in the field? Look no further than the Telegram channel 'Machine learning books and papers' curated by the knowledgeable admin @Raminmousa. This channel is dedicated to providing its members with a vast collection of machine learning books and research papers to help them stay up-to-date with the latest trends and developments in the industry. Whether you are a beginner looking to learn the basics or an experienced professional seeking advanced resources, this channel has something for everyone. By joining 'Machine learning books and papers', you will have access to a diverse range of resources that will enhance your understanding of machine learning algorithms, techniques, and applications. Stay informed, inspired, and ahead of the curve by joining this valuable community today. For more information and to join the channel, visit the following link: https://t.me/Machine_learn

Machine learning books and papers

13 Nov, 21:14


🖥 Awesome LLM Strawberry (OpenAI o1)



Github

https://t.me/deep_learning_proj

Machine learning books and papers

12 Nov, 13:26


با عرض سلام نفرات ٢ و ٣ اين مقاله باقي موندن

Machine learning books and papers

12 Nov, 12:39


📖 A Data-Centric Introduction to Computing



link

@Machine_learn

Machine learning books and papers

10 Nov, 23:13


Financial Statement Analysis with Large Language Models (LLMs)

📕 Book

@Machine_learn

Machine learning books and papers

10 Nov, 22:21


Foundations Of The Theory Of Probability by
Andrey Nikolaevich Kolmogorov
🔥🔥🔥
Read the book

@Machine_learn

Machine learning books and papers

10 Nov, 10:18


با عرض سلام مقاله زیر در مرحله ی اولیه ارسال می باشد. نفرات 2و ۳ خالی می باشد. دوستانی که نیاز دارند می تونن به ایدی بنده پیام بدن. همچنین امکان ریکام‌دادن بعد اتمام کار وجود داره.
💠💠
Title:
Automated Concrete Crack Detection and Geometry Measurement Using YOLOv8
Description:
This paper presents a comprehensive approach for automatic detection and quantification of concrete cracks using the YOLOv8 deep learning model. By leveraging advanced object detection capabilities, our system identifies concrete cracks in real-time with high accuracy, addressing challenges of complex backgrounds and varying crack patterns. Following crack detection, we employ image processing techniques to measure key geometric parameters such as width, length, and area. This integrated system enables rapid, precise analysis of structural integrity, offering a scalable solution for infrastructure monitoring and maintenance.

🔸Target Journal:
Nature, Scientific Reports

@Raminmousa
@Machine_learn
https://t.me/+SP9l58Ta_zZmYmY0

Machine learning books and papers

10 Nov, 10:17


How to Build Your Career in AI

📚 Book

@Machine_learn

Machine learning books and papers

10 Nov, 10:16


understanding deep learning

📚 Book

@Machine_learn

Machine learning books and papers

10 Nov, 10:15


Applied Mathematics of the Future

📚 Book

@Machine_learn

Machine learning books and papers

08 Nov, 18:01


This repository contains a collection of resources in the form of eBooks related to Data Science, Machine Learning, and similar topics.

📖 book

💠@Machine_learn

Machine learning books and papers

07 Nov, 15:14


📃 Plant-based anti-cancer drug discovery using computational approaches

📎 Study the paper

@Machine_learn

Machine learning books and papers

07 Nov, 07:56


Constrained Diffusion Implicit Models!

We use diffusion models to solve noisy inverse problems like inpainting, sparse-recovery, and colorization. 10-50x faster than previous methods!

Paper: arxiv.org/pdf/2411.00359

Demo: https://t.co/m6o9GLnnZF

@Machine_learn

Machine learning books and papers

07 Nov, 07:55


Smol TTS models are here! OuteTTS-0.1-350M - Zero shot voice cloning, built on LLaMa architecture, CC-BY license! 🔥

> Pure language modeling approach to TTS
> Zero-shot voice cloning
> LLaMa architecture w/ Audio tokens (WavTokenizer)
> BONUS: Works on-device w/ llama.cpp

Three-step approach to TTS:

> Audio tokenization using WavTokenizer (75 tok per second).
> CTC forced alignment for word-to-audio token mapping.
> Structured prompt creation w/ transcription, duration, audio tokens.

https://huggingface.co/OuteAI/OuteTTS-0.1-350M

@Machine_learn

Machine learning books and papers

07 Nov, 07:54


📕 Machine Learning for Absolute Beginners

▪️Link

@Machine_learn

Machine learning books and papers

06 Nov, 12:39


Machine Learning with PyTorch and Scikit-Learn Book

📚 book

@Machine_learn

Machine learning books and papers

05 Nov, 19:03


AutoWebGLM: Bootstrap And Reinforce A Large Language Model-based Web Navigating Agent

🖥 Github: https://github.com/thudm/autowebglm

📕 Paper: https://arxiv.org/abs/2404.03648v1

🔥Dataset: https://paperswithcode.com/dataset/mind2web

@Machine_learn

Machine learning books and papers

04 Nov, 20:10


❤️ اکستنشن ChatGPT Search برای مرورگرهای کرومیوم منتشر شد

از طریق این لینک میتونید این افزونه رو دانلود کنید
@Machine_learn

Machine learning books and papers

04 Nov, 15:50


Conformal prediction under ambiguous ground truth

Paper: https://arxiv.org/pdf/2307.09302v2.pdf

Codes:

https://github.com/google-deepmind/uncertain_ground_truth

https://github.com/alaalab/webcp

Dataset: Dermatology ddx dataset

@Machine_learn

Machine learning books and papers

04 Nov, 08:08


فقط جایگاه دوم از این مقاله باقی مونده

Machine learning books and papers

04 Nov, 06:09


الحمدالله تو اين بازه ٣ ماه تونستيم مقالات مشاركتي رو تحت وظايف زير انجام بديم:
🔹ثبت ٤ مقاله در حوزه Multi-modal wond classification

🔹ارائه ی دو مقاله در حوزه ی breast cancer segmentation

🔹 ارائه ی سه مقاله در حوزه ی cancer detection
که ۸۰٪ مراحل این مقالات هم تموم شده.

به زودی پس از اتمام این مقالات لیستی از مقالات مشارکتی رو خواهیم داشت .

https://t.me/+SP9l58Ta_zZmYmY0

Machine learning books and papers

04 Nov, 04:38


👩‍💻 Python Notes for Professionals book

🔗 Book

@Machine_learn

Machine learning books and papers

04 Nov, 04:37


📖 LLM-Agent-Paper-List is a repository of papers on the topic of agents based on large language models (LLM)! The papers are divided into categories such as LLM agent architectures, autonomous LLM agents, reinforcement learning (RL), natural language processing methods, multimodal approaches and tools for developing LLM agents, and more.

🖥 Github

https://t.me/deep_learning_proj

Machine learning books and papers

03 Nov, 09:26


💠Title:BERTCaps: BERT Capsule for persian Multi-domain Sentiment Analysis.

🔺Abstract:
Sentiment classification is widely known as a domain-dependent problem. In order to learn an accurate domain-specific sentiment classifier, a large number of labeled samples are needed, which are expensive and time-consuming to annotate. Multi-domain sentiment analysis based on multi-task learning can leverage labeled samples in each single domain, which can alleviate the need for large amount of labeled data in all domains. In this article, the purpose is BERTCaps to provide a multi-domain classifier. In this model, BERT was used for Instance Representation and Capsule was used for instance learning. In the evaluation dataset, the model was able to achieve an accuracy of 0.9712 in polarity classification and an accuracy of 0.8509 in domain classification.

journal: https://www.sciencedirect.com/journal/array
If:2.3

جايگاه ٢ و ٤ اين مقاله رو نياز داريم.
دوستاني كه مايل به شركت هستن مي تونن به ايدي بنده پيام بدن.
@Raminmousa
@Paper4money
@Machine_learn

Machine learning books and papers

03 Nov, 09:24


Data Pipelines with Apache Airflow

📘 book

@Machine_learn

Machine learning books and papers

01 Nov, 17:07


📑A Survey of Deep Learning Methods for Estimating the Accuracy of Protein Quaternary Structure Models



📎 Study the paper

@Machine_learn

Machine learning books and papers

01 Nov, 14:58


Ms - SmolLM2 1.7B - beats Qwen 2.5 1.5B & Llama 3.21B, Apache 2.0 licensed, trained on 11 Trillion tokens 🔥

> 135M, 360M, 1.7B parameter model
> Trained on FineWeb-Edu, DCLM, The Stack, along w/ new mathematics and coding datasets
> Specialises in Text rewriting, Summarization & Function Calling
> Integrated with transformers & model on the hub!

You can run the 1.7B in less than 2GB VRAM on a Q4 👑

Fine-tune, run inference, test, train, repeat - intelligence is just 5 lines of code away!

https://huggingface.co/collections/HuggingFaceTB/smollm2-6723884218bcda64b34d7db9

@Machine_learn

Machine learning books and papers

01 Nov, 06:29


💠Title:BERTCaps: BERT Capsule for persian Multi-domain Sentiment Analysis.

🔺Abstract:
Sentiment classification is widely known as a domain-dependent problem. In order to learn an accurate domain-specific sentiment classifier, a large number of labeled samples are needed, which are expensive and time-consuming to annotate. Multi-domain sentiment analysis based on multi-task learning can leverage labeled samples in each single domain, which can alleviate the need for large amount of labeled data in all domains. In this article, the purpose is BERTCaps to provide a multi-domain classifier. In this model, BERT was used for Instance Representation and Capsule was used for instance learning. In the evaluation dataset, the model was able to achieve an accuracy of 0.9712 in polarity classification and an accuracy of 0.8509 in domain classification.

journal: https://www.sciencedirect.com/journal/array
If:2.3

جايگاه ٢ و ٤ اين مقاله رو نياز داريم.
دوستاني كه مايل به شركت هستن مي تونن به ايدي بنده پيام بدن.
@Raminmousa
@Paper4money
@Machine_learn

Machine learning books and papers

31 Oct, 10:55


SAM2Long: Enhancing SAM 2 for Long Video Segmentation with a Training-Free Memory Tree

🖥 Github: https://github.com/mark12ding/sam2long

📕 Paper: https://arxiv.org/abs/2410.16268v1

🤗 HF: https://huggingface.co/papers/2410.16268

@Machine_learn

Machine learning books and papers

31 Oct, 10:52


Intermediate Python

📖 Book

@Machine_learn

Machine learning books and papers

31 Oct, 10:51


🌟 Aya Expanse


🟢Aya Expanse 32B
🟢Aya Expanse 8B


🟠Aya Expanse 32B-GGUF
🟠Aya Expanse 8B-GGUF

Expanse 8B Transformers :

from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "CohereForAI/aya-expanse-8b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# Format the message with the chat template
messages = [{"role": "user", "content": " %prompt% "}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>%prompt%<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>

gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)

gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)





🟡GGUF 32B
🟡GGUF 8B
🟡Demo


@Machine_learn

Machine learning books and papers

31 Oct, 10:48


⚡️ Stable Diffusion 3.5 Large.

# install Diffusers
pip install -U diffusers


# Inference
import torch
from diffusers import StableDiffusion3Pipeline

pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
pipe = pipe.to("cuda")

image = pipe(
"A happy woman laying on a grass",
num_inference_steps=28,
guidance_scale=3.5,
).images[0]
image.save("woman.png")





🟡Arxiv



@Machine_learn

Machine learning books and papers

31 Oct, 08:55


با عرض سلام امروز اخرين وقت براي مشاركت در اين مقاله مي باشد...!

Machine learning books and papers

30 Oct, 13:11


Title:
Advanced Classification of Drug-Drug Interactions for Assessing Adverse Effect Risks of Fluvoxamine and Curcumin Using Deep Learning in COVID-19
———————————————————————
Keywords:
Drug–Drug Interactions; Deep Neural Network; Fluvoxamine; Curcumin; Machine Learning.
———————————————————————
Journal of Infrastructure, Policy and Development


نفر اول پرشده
نفر دوم و سوم و چهارم خالی هست.

مقاله در اخرین ریوایزد خود می باشد.

@Raminmousa
@Machine_learn
https://t.me/+SP9l58Ta_zZmYmY0

Machine learning books and papers

30 Oct, 13:06


THINKING LLMS: GENERAL INSTRUCTION FOLLOWING WITH THOUGHT GENERATION

📚 Reed

@Machine_learn

Machine learning books and papers

30 Oct, 13:06


📕 Applied Causal #Inference Powered by #MachineLearning

📌Book

@Machine_learn

Machine learning books and papers

30 Oct, 07:00


با عرض سلام نيازمند co-author براي مقاله زیر هستيم.
Target Journal: International Journal of Media and Networks | Opast Publishing Group (opastpublishers.com)
if: 1.2
Paper link: A Survey of Generative Adversarial Network on Next Generation Network[v1] | Preprints.org

تغييرات كامل نسخه نهايي تا يك هفته اينده اعمال ميشه كسي از دوستان تمايل به همكاري داشت به ايدي بنده پيام بدن.

@Raminmousa
@Machine_learn
https://t.me/+SP9l58Ta_zZmYmY0

Machine learning books and papers

29 Oct, 19:16


🌟 Zamba2-Instruct

В семействе 2 модели:

🟢Zamba2-1.2B-instruct;
🟠Zamba2-2.7B-instruct.



# Clone repo
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2

# Install the repository & accelerate:
pip install -e .
pip install accelerate

# Inference:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)

user_turn_1 = "user_prompt1."
assistant_turn_1 = "assistant_prompt."
user_turn_2 = "user_prompt2."
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)

input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))





🖥GitHub

https://t.me/deep_learning_proj

Machine learning books and papers

29 Oct, 19:14


An Infinite Descent into Pure Mathematics

📚 Book

@Machine_learn

Machine learning books and papers

27 Oct, 18:53


Tutorial on Diffusion Models for Imaging and Vision

📚 Book

@Machine_learn

Machine learning books and papers

27 Oct, 18:53


NotebookLlama: An Open Source version of NotebookLM

📚 Book

@Machine_learn

Machine learning books and papers

27 Oct, 18:52


The State of AI Report

📚 Report

@Machine_learn

Machine learning books and papers

24 Oct, 19:49


📑 A guide to RNA sequencing and functional analysis


📎 Study the paper

@Machine_learn

Machine learning books and papers

24 Oct, 19:47


💡 SAM2Long, a training-free enhancement to SAM 2 for long-term video segmentation


🟡Technical Report: https://huggingface.co/papers/2410.16268
🟡Github: https://github.com/Mark12Ding/SAM2Long
🟡Homepage: https://mark12ding.github.io/project/SAM2Long/



@Machine_learn

Machine learning books and papers

24 Oct, 06:55


فقط نفر ۲ و ۴ از این باقی مونده ....!

Machine learning books and papers

24 Oct, 04:19


private link:
https://t.me/+SP9l58Ta_zZmYmY0

Machine learning books and papers

23 Oct, 17:13


Title: BERTCaps: BERT Capsule for persian Multi-domain Sentiment Analysis.

Abstract:
Sentiment classification is widely known as a domain-dependent problem. In order to learn an accurate domain-specific sentiment classifier, a large number of labeled samples are needed, which are expensive and time-consuming to annotate. Multi-domain sentiment analysis based on multi-task learning can leverage labeled samples in each single domain, which can alleviate the need for large amount of labeled data in all domains. In this article, the purpose is BERTCaps to provide a multi-domain classifier. In this model, BERT was used for Instance Representation and Capsule was used for instance learning. In the evaluation dataset, the model was able to achieve an accuracy of 0.9712 in polarity classification and an accuracy of 0.8509 in domain classification.

journal: https://www.sciencedirect.com/journal/array
If: 2.3

نفرات ٢ تا ٤ اين مقاله رو نياز داريم.
دوستاني كه مايل به شركت هستن مي تونن به ايدي بنده پيام بدن.
@Raminmousa
@Paper4money
@Machine_learn

Machine learning books and papers

23 Oct, 13:42


LLM Engineer's Handbook: Master the art of engineering Large Language Models from concept to production.

🖥 Github

@Machine_learn

Machine learning books and papers

22 Oct, 19:53


💡 Ultimate Guide to Fine-Tuning LLMs

📚 link

@Machine_learn

Machine learning books and papers

22 Oct, 07:47


Linear Algebra Done Right

📓 Book

@Machine_learn

Machine learning books and papers

21 Oct, 11:59


فقط نفر دوم از این مقاله مونده...!

Machine learning books and papers

21 Oct, 02:31


يكي از بهترين موضوعات در طبقه بندي متن؛ تحليل احساس چند دامنه اي مي باشد. براي اين منظور مدلي تحت عنوان
Title: TRCAPS: The Transformer-based Capsule Approach for Persian Multi-
Domain Sentiment Analysis
طراحي كرديم كه نتايج خيلي بهتري نسبت به IndCaps داشته است.
دوستاني كه نياز به مقاله تو حوزه NLP دارن مي تونن تا اخر اين هفته داخل اين مقاله شركت كنند.

ژورنال هدف Array elsevier مي باشد.

شركت كنندگان داخل اين مقاله نياز به انجام تسك هايي نيز مي باشند.

@Raminmousa
@Machine_learn
@Paper4money

Machine learning books and papers

20 Oct, 19:47


📄 Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade



📎 Study the paper

@Machine_learn

Machine learning books and papers

20 Oct, 19:31


🌟 Zamba2-Instruct

🟢Zamba2-1.2B-instruct;
🟠Zamba2-2.7B-instruct.


# Clone repo
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2

# Install the repository & accelerate:
pip install -e .
pip install accelerate

# Inference:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)

user_turn_1 = "user_prompt1."
assistant_turn_1 = "assistant_prompt."
user_turn_2 = "user_prompt2."
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)

input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))


🖥GitHub


@Machine_learn

Machine learning books and papers

20 Oct, 19:30


estimating body and hand motion from a pair of glasses 🤓

website:
http://egoallo.github.io

code:
http://github.com/brentyi/egoallo

@Machine_learn

Machine learning books and papers

19 Oct, 14:59


Prompt Engineering Techniques: Comprehensive Repository for Development and Implementation 🖋️

📓 Github

@Machine_learn

Machine learning books and papers

18 Oct, 20:09


🔥 NVIDIA silently release a Llama 3.1 70B fine-tune that outperforms
GPT-4o and Claude Sonnet 3.5


Llama 3.1 Nemotron 70B Instruct a further RLHFed model on
huggingface


https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8
https://t.me/deep_learning_proj

Machine learning books and papers

18 Oct, 15:11


✔️ LVD-2M: A Long-take Video Dataset with Temporally Dense Captions

New pipeline for selecting high-quality long-take videos and generating temporally dense captions.

Dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions.

🖥 Github: https://github.com/silentview/lvd-2m

📕 Paper: https://arxiv.org/abs/2410.10816v1

🖥 Dataset: https://paperswithcode.com/dataset/howto100m

🔸@Machine_learn

Machine learning books and papers

18 Oct, 14:00


Algebraic topology for physicists

📓 Book

@Machine_learn

Machine learning books and papers

17 Oct, 18:53


📑 Nine quick tips for open meta-analyses


📎 Study the paper

@Machine_learn

Machine learning books and papers

17 Oct, 18:21


📃Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives


📎 Study the paper

@Machine_learn

Machine learning books and papers

17 Oct, 11:22


پروژه های بیشتر شبیه این ریپورت داخل این پک قرار داره. دوستانی که نیاز دارن می تونن به ایدی بنده مراجعه کنن.

@Raminmousa

Machine learning books and papers

17 Oct, 11:14


Thesis: Yolo object detection

این پروژه سال ۲۰۲۰ با یکی از دوستان انجام دادیم که هدف تشخیص وزن پل با استفاده از Yolo بود. جزئیات مدل یولو رو داخل این بررسی کردیم . برای دوستانی که می خوان بیشتر این مدل رو بررسی کنن می تونه مفید باشه.
@Machine_learn

Machine learning books and papers

17 Oct, 06:16


Neural Networks and Deep Learning

📓 book

@Machine_learn

Machine learning books and papers

16 Oct, 06:45


Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts

💻 Github: https://github.com/freedomintelligence/apollomoe

🔖 Paper: https://arxiv.org/abs/2410.10626v1

🤗 Dataset: https://paperswithcode.com/dataset/mmlu

@Machine_learn

Machine learning books and papers

15 Oct, 09:48


با عرض سلام خيلي از دوستان در رابطه با طراحي صفر تا صد پروژه هاي ديپ از بنده سوال پرسيدن داخل پك زير ٣٦ پروژه رو با جزئيات شرح دادم:

1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
دوستاني كه نياز به اين پروژه ها دارن ميتونن با بنده در ارتباط باشن.
@Raminmousa
@Machine_learn

Machine learning books and papers

15 Oct, 08:34


Probability and Statistics The Science of Uncertainty

📖 book

@Machine_learn

Machine learning books and papers

14 Oct, 18:44


UC Berkeley's "Machine Learning" lecture notes

📓 Book

@Machine_learn

Machine learning books and papers

14 Oct, 18:42


📃Fake news detection: A survey of graph neural network methods

📎 Study paper


@Machine_learn

Machine learning books and papers

13 Oct, 19:47


Artificial Intelligence A Modern Approach

📚 Book

@Machine_learn

Machine learning books and papers

13 Oct, 06:24


Generalizable and Animatable Gaussian Head Avatar

🖥 Github: https://github.com/xg-chu/gagavatar

📕 Paper: https://arxiv.org/abs/2410.07971v1

@Machine_learn

Machine learning books and papers

12 Oct, 11:28


Financial Machine Learning

📓 book

@Machine_learn

Machine learning books and papers

11 Oct, 14:41


Crawl 4 AI

Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper

Creator: UncleCode
Stars ⭐️: 8.6k
Forked By: 627
https://github.com/unclecode/crawl4ai

https://t.me/deep_learning_proj

Machine learning books and papers

11 Oct, 14:40


Deep Learning and Computational Physics - Lecture Notes, University of South California

📓 book

@Machine_learn

Machine learning books and papers

10 Oct, 05:55


Mathematical theory of deep learning

📚 Book

@Machine_learn

17,714

subscribers

631

photos

43

videos