Последние посты gonzo-обзоры ML статей (@gonzo_ml) в Telegram

Посты канала gonzo-обзоры ML статей

gonzo-обзоры ML статей
Авторы:
Гриша Сапунов, ранее руководитель разработки Яндекс-Новостей, ныне CTO Intento. Области интересов: AI/ML/DL, биоинформатика.
Лёша Тихонов, ранее аналитик в Яндексе, автор Автопоэта, Нейронной Обороны... Области интересов: discrete domain, NLP, RL.
21,332 подписчиков
2,229 фото
1 видео
Последнее обновление 11.03.2025 07:43

Похожие каналы

Neural Shit
46,404 подписчиков
Experimental chill
9,100 подписчиков
DeepSchool
7,928 подписчиков

Последний контент, опубликованный в gonzo-обзоры ML статей на Telegram

gonzo-обзоры ML статей

21 Feb, 11:17

2,614

Таня и команда сделали
gonzo-обзоры ML статей

21 Feb, 11:17

1,601

🌸MLGym – открытый фреймворк и бенчмарк для Агентов в автоматизации ML-задач🌸
#nlp #про_nlp #nlp_papers

Сегодня, под конец этой насыщенной недели, мы с коллегами выпускаем новую работу "MLGym: A New Framework and Benchmark for Advancing AI Research Agents".

🟣TL;DR
MLGym – это фреймворк для оценки и развития LLM-агентов.
В нем пока 15 различных ML задач, включая хорошо и не очень определенные: задачи на NLP, CV, RL, теорию игр.
Агенты должны продемонстрировать свою способность понять задачу, запустить бейзлайн, оцени его, и начать итерировать эксперименты и улучшать результат, находясь при этом в заданной среде. В среде есть набор инструментов, которые можно использовать: поиск по файловой системе, поиск по файлам, модуль памяти, просмотр и изменение файлов, и собственно действия запуска скрипта оценки и сабмита решения.
Каждая задача содержит датасет, метрику, бейзлайн, а также свою собственную среду, где есть контролируемые ограничения на вычислительный бюджет и таймауты.

Мы предлагаем иерархическую структуру из 6 уровней для оценки степени автономии и научного вклада агентов:
Уровень 0: воспроизведение – аккуратно повторить чужие эксперименты без ошибок
Уровень 1: Итеративное улучшение бейзлайна – применение лучших практик, перебор гипертапаметров
Уровень 2: Достижение SOTA через итерации от бейзлайна – решение лучше тех, что смогли найти люди
Уровень 3: Новый научный вклад – можно быть принятым на условный NeurIPS
Уровень 4: Научное новаторство, фундаментальный научный вклад – можно получить "лучшую статью" на том же NeurIPS
Уровень 5: Долгосрочная исследовательская программа – test of time awards, научная революция, премия Тьюринга.

🟣Что мы выяснили?
Текущие ИИ системы находятся почти поголовно на уровне 1.

Удобно оценивать все системы относительно дельты, которую они смогли достичь, опираясь на бейзлайн, за заданное количество итераций (за первые 5 шагов у системы Х получили +15% точности, а у системы Y +20%). Если оценивать LLM-агенты так, то увидим, что O1-preview вырывается вперед практически на всех задачах. GPT-4o и LLama 3.1 405B примерно на одном уровне, Claude и Gemini делят обычно 2 и 3 место. Ну а если помимо дельты оценивать еще и стоимость инференса модели, но картина меняется, и лучше по соотношению оказывается Gemini с большим отрывом.  

Достаточно интересно посмотреть распределение действий агентов и их ошибок:
— большинство LLM-агентов делают ошибки и из-за этого не доходят до сабмита, тогда как O1 и Gemini гораздо чаще просто не доделывают сабмит до конца.
— все агенты большую часть действий тратят на изменение файлов: редактирование скриптов обучения, а также чтение файлов, запуск обучения и валидацию — соотношение действий примерно у всех одинаковое, хотя некоторым система действий требуется меньше.
— почти все агенты очень мало используют поиск, хотя могли бы.
— минимальное число итераций до первого сабмита — примерно 5. Все системы начинают с чтения файлов, затем запускают валидацию, и дальше планомерно итерируются, изменяя скрипты и запуская обучение.

🟣Что еще есть полезного?
— Классный Web UI визуализатор агентных логов на streamlit
— Есть набор полезных функций и tools, полностью совместимый с SWE-Agent.
— Есть модуль памяти, модуль поиска научной литературы, и еще много разных ништяков, которые можно использовать отдельно от бенчмарка, просто развивая своего агента (свой агент? Это же неодушевленное...)
— Есть большой обзор литературы, охватывающий почти все последние работы в области агентов для SWE, ML, науки, который угадайте кто писал.

Линейку задач можно легко расширять — поэтому мы будем рады идеям и контрибьюшенам, а также любой активности в репозитории.

🟣Arxiv: https://arxiv.org/abs/2502.14499
🟣Github: https://github.com/facebookresearch/MLGym
🟣Лицензия: CC-BY-NC 4.0
gonzo-обзоры ML статей

20 Feb, 23:22

2,904

TWIMC
Русскоязычный курс по AI Safety
gonzo-обзоры ML статей

20 Feb, 23:22

3,009

📣 Open-call: Курс по основам AI Safety

ИИ меняет мир с безумной скоростью, но вместе с этим несет в себе серьезные риски. Задача AI Safety – позаботиться, чтобы эти изменения были положительными

Цель курса – дать базу для начала карьеры в AI Safety. Программа знакомит с основными концепциями, ландшафтом исследований и работами Anthropic, Redwood Research, MIRI

📖 Программа из двух треков:
Учебный (4 недели): Знакомство с материалами в фасилитируемых группах
Проектный (7 недель): Работа с ментором нацеленная на публикацию

👥 Для кого?
Будущие рисечеры: ml'щики, физики, математики, программисты
Будущие фаундреры: предприниматели интересующиеся AI Safety

🎓 Сертификат по окончанию курса
👏 Карьерная консультация и менторское сопровождение для лучших студентов

🔫 Экспертиза менторов включает: evals, agent foundations, adversarial attacks, representation engineering, safety field building, mechanistic interpetability

💼 Этим курсом мы готовим людей себе в команды и в команды наших друзей по сейфти. Поэтому курс бесплатный. По этой же причине мы серьезно подходим к отбору кандидатов

🔢 Детали:
Очно в Москве или онлайн
Регистрация открыта до 21 февраля
Даты: 2 марта – 20 апреля
Нагрузка: 10-15 часов в неделю

💬 По вопросам пишите @anton_zheltoukhov

➡️➡️ Зарегистрироваться
gonzo-обзоры ML статей

20 Feb, 19:46

2,541

В общем забавно это всё. Можно делать таких виртуальных агентов и отрабатывать на них различные социальные эксперименты — реакцию на полиси, результаты опросов и голосований. В целом это уже было так или иначе, но будет только больше и лучше. Давно уже хотел собрать цифровую копию какого-нибудь парламента, но времени нет. Не сомневаюсь, что хорошо сработает. Может быть как раз эти же авторы что-то такое и делают как второй шаг после генеративных агентов 23-го года (https://t.me/gonzo_ML/1481).

Цифровое бессмертие где-то рядом. А буквенное ещё ближе. Кража identity personality тоже.
gonzo-обзоры ML статей

20 Feb, 19:46

2,463

Такие заметки потом и подаются в агента вместо полного транскрипта интервью + последние 5000 символов транскрипта.

Агента собрали в виде веб-приложения с голосовым общением, реализованным через комбинацию OpenAI TTS + Whisper. Тут не до конца понятно, упоминают также их Audio модель, а это gpt-4o-audio (но тогда непонятно, зачем whisper).

🤖 Симулякр

Архитектура агента-симулякра тоже наследует предыдущей работе. У агента есть память, "memory stream" в текстовой форме. Есть модуль рефлексии, синтезирующий элементы памяти в рефлексию (аналогично https://t.me/gonzo_ML/1481).

Промптинг LLM-ки транскриптом интервью для предсказания реакции респондента в режиме одиночного chain-of-thought (CoT) может пропустить латентную информацию не выраженную явно в тексте. Чтобы явно вытащить эту информацию из транскрипта был введён специальный модуль “expert reflection”, которого промптят чтобы он действовал в роли доменного эксперта. Если точнее, то генерятся четыре набора рефлексий от лица четырёх различных экспертов: психолог, поведенческий экономист, политолог и демограф. Используется GPT-4o, которую для каждого респондента и эксперта просят сгенерить до 20 наблюдений или рефлексий. Эти рефлексии генерятся единожды и сохраняются в памяти агента.

Когда симулякр должен предсказать ответ респондента на заданный вопрос, сначала происходит классификация (через промптинг), какой из четырёх экспертов лучше бы на это ответил. Затем подтягиваются рефлексии выбранного эксперта, и вместе с транскриптом интервью используются для промптинга генерации ответа (тоже через GPT-4o). Все вопросы с множественным выбором или численным ответом, модель промптят использовать CoT. Интересно, что бы изменил переход на reasoning модель типа o1/o3/R1?

Если для поведенческого эксперимента важно поддержание контекста, то полученные агентом стимулы и его ответы дописывают текстом к транскрипту и рефлексиям.

🏋️‍♀️ Эксперимент

Далее полученным агентам дают ту же самую батарею тестов и экспериментов (GSS, BFI-44, пять экономических игр, пять поведенческих экспериментов), сравнивают с настоящими ответами респондента.

В качестве бейзлайнов сравнивают с двумя: 1) агент с демографическими атрибутами (вытянули из ответов GSS) и 2) параграф текста, суммаризирующий конкретную персону (респондентов просили написать о себе бриф).

На GSS, BFI-44 и пяти играх считали normalized accuracy как отношение точности предсказания агента к internal consistency, точности репликации человеком своих ответов через две недели. Для категориальных задач использовалась accuracy, для числовых mean absolute error (MAE).

Для GSS средняя normalized accuracy равна 0.85 с std = 0.11, получена как 68.85% точность агента делённая на 81.25% точность репликации ответа самим человеком. Агент на основе интервью заметно лучше бейзлайнов (и сильно выше рандома). На BFI тоже лучше. В экономических играх значимой разницы с бейзлайнами нет.

Провели ещё сколько-то разных экспериментов, включая собирание композитного агента с компиляцией всех ответов респондента на GSS, BFF, игры, но без интервью. С интервью лучше, даже если оттуда вырезать рандомно до 80% транскрипта или сгенерировать короткое саммари из буллет пойнтов.

На пяти поведенческих экспериментах (например, про “allocator’s illusion” https://www.pnas.org/doi/10.1073/pnas.1606574113) и люди, и агенты реплицировали 4 из 5 экспериментов. То есть агенты действуют аналогично и на них можно проверяться.

Ещё проверили, есть ли баесы по полу, расе или идеологии, оценивали разницу между группами, перформящими лучшу и хуже всех. Агенты на основе интервью лучше агентов на основе демографии или персон. Интервью рулят короче.

———
gonzo-обзоры ML статей

20 Feb, 19:46

3,024

Generative Agent Simulations of 1,000 People
Joon Sung Park, Carolyn Q. Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai, Meredith Ringel Morris, Robb Willer, Percy Liang, Michael S. Bernstein
Статья: https://arxiv.org/abs/2411.10109
Пост: https://hai.stanford.edu/news/ai-agents-simulate-1052-individuals-personalities-impressive-accuracy

Мы в прошлом году не разобрали эту статью, а она интересное практическое продолжение темы из 2023-го про Generative Agents (https://t.me/gonzo_ML/1481) от Стэнфорда и ко. Теперь авторы взяли и симулировали 1,052 реальных человека, а потом на последующих опросах сумели добиться 85% точности репликации их собственных ответов и действий в экспериментах через две недели. Кроме того собрали полезного агента-помощника для проведения интервью.

Процедура создания агента выглядит так:

🎤 Интервью

Были проведены глубинные интервью, включавшие в себя заранее заданные вопросы и адаптивные последующие, зависящие от ответов респондента.

Через стратифицированную выборку набрали 1052 участника, чтобы получить репрезентативную выборку US популяции по возрасту, полу, расе, региону, образованию и политической идеологии. Все участники прошли голосовое интервью со средней длиной транскрипта 6,491 слов (stddev 2,541). Также собрали ответы на серию опросников (General Social Survey (GSS), Big Five Inventory из 44 пунктов(BFI-44)) и результаты поведенческих экспериментов (пять экономических игр и пять поведенческих экспериментов). Интервью потом будет использоваться для прайминга агентов, а опросы/эксперименты для оценки точности полученных агентов. Также было ещё и self-consistency интервью через две недели после перечисленного.

Изначально через компанию Bovitz рекрутировали 1300 человек (хотели в итоге получить 1000 для достаточной статистической мощности пяти поведенческих экспериментов). Участникам платили: $60 за первый опрос, $30 за self-consistency через две недели, и ещё был бонус в диапазоне 0-10$ по результатам экономических игр. Не все дошли до второй фазы и выполнили self-consistency опрос, так что осталось 1052 (но ожидали ещё больший отсев).

Для этого прям заморочились и собрали свою платформу, где респондент может зарегаться, создать аватара, дать consent, пройти интервью, опросы и эксперименты, в заданном порядке и в нужное время. Для скейлинга интервью использовался ИИ-интервьюер, проводивший его по полуструктурированному протоколу. Хотели именно интервью, а не опрос, потому что надеялись получить более полную информацию с ценными нюансами. За основу взяли протокол, разработанный американскими социологами в рамках American Voices Project. В скрипте были темы от истории жизни до взглядов на текущие социальные темы. Оригинальный протокол был рассчитан на трёхчасовое интервью, здесь его немного урезали, чтобы всё умещалось в два часа.

ИИ-Интервьюер сам динамически генерировал последующие вопросы, соответствующие ответам участников. Архитектура агента была вариацией на тему оригинального Generative Agent (https://t.me/gonzo_ML/1486). Агент принимал на вход свежие предыдущие ответы респондента и скрипт интервью, и генерил follow-up вопросы или переходил к следующему вопросу в скрипте. Вопросы структурированы в блоки, для каждого вопроса прописано поле с указанием, сколько времени дано на вопрос. Первый вопрос блока агент задаёт не меняя, а затем ориентируясь на оставшийся бюджет времени и ответы респондента принимает решения в динамике, что именно спросить. Модель для этого должна делать некоторый ризонинг и учитывать весь контекст, но при росте контекста текущие (на тот момент, да наверное и на этот) модели обычно деградируют, так что в агента ввели модуль рефлексии, который суммаризирует беседу и записывает выводы, которые можно сделать про респондента.

Так, если до этого агент спрашивал, где респондент родился, а тот упомянул природу этого места, агент мог задать вопрос про походы и записать в итоге после рефлексии что-то вроде:

{
“place of birth”: “New Hampshire”
“outdoorsy vs. indoorsy”: “outdoorsy with potentially a lot of time spent outdoors”
}
gonzo-обзоры ML статей

20 Feb, 16:17

2,127

Sakana.ai (1, 2) продолжает придумывать что-то прикольное.

Агентная система для генерации оптимизированных CUDA кернелов
https://sakana.ai/ai-cuda-engineer/

Внутрь статьи пока не забуривался, но выглядит прикольно.
gonzo-обзоры ML статей

20 Feb, 16:07

2,398

DeepMind опубликовали большой плейбук по скейлингу трансформеров на TPU (https://t.me/gonzo_ML/3365), а HuggingFace выложил похожее про GPU.

The Ultra-Scale Playbook: Training LLMs on GPU Clusters
https://huggingface.co/spaces/nanotron/ultrascale-playbook
gonzo-обзоры ML статей

19 Feb, 17:21

3,271

Вслед за Гуглом с Willow (https://t.me/gonzo_ML/3078), в квантовых компьютерах активничает Microsoft.

Сегодня они анонсировали Majorana 1 (Этторе Майорану мы любим!), квантовый процессор на топологических кубитах. Microsoft рассчитывает отскейлить квантовые компьютеры на этой технологии.

Сатья Надела интересно написал:

A couple reflections on the quantum computing breakthrough we just announced...

Most of us grew up learning there are three main types of matter that matter: solid, liquid, and gas. Today, that changed.

After a nearly 20 year pursuit, we’ve created an entirely new state of matter, unlocked by a new class of materials, topoconductors, that enable a fundamental leap in computing.

It powers Majorana 1, the first quantum processing unit built on a topological core.

We believe this breakthrough will allow us to create a truly meaningful quantum computer not in decades, as some have predicted, but in years.

The qubits created with topoconductors are faster, more reliable, and smaller.

They are 1/100th of a millimeter, meaning we now have a clear path to a million-qubit processor.

Imagine a chip that can fit in the palm of your hand yet is capable of solving problems that even all the computers on Earth today combined could not!

Sometimes researchers have to work on things for decades to make progress possible.

It takes patience and persistence to have big impact in the world.

And I am glad we get the opportunity to do just that at Microsoft.

This is our focus: When productivity rises, economies grow faster, benefiting every sector and every corner of the globe.

It’s not about hyping tech; it’s about building technology that truly serves the world.



Ссылки в тему:
* https://news.microsoft.com/source/features/ai/microsofts-majorana-1-chip-carves-new-path-for-quantum-computing/
* https://azure.microsoft.com/en-us/blog/quantum/2025/02/19/microsoft-unveils-majorana-1-the-worlds-first-quantum-processor-powered-by-topological-qubits/
* https://arxiv.org/abs/2502.12252

Пора, кажется, уже учить квантовые алгоритмы, явно назревает что-то.